Publishing: An editor’s perspective

Pete Strutton, IMAS/UTas
ARC Centre of Excellence for Climate Extremes

Editor for Geophysical Research Letters, 2010-2015
Topic areas: Physical, Biological, Chemical, Paleo Oceanography
(so note that editors are not always specialists in your field)

Some stats:
1304 manuscripts (20-25 per month)
35% acceptance rate (but actually higher)
25% reject without review
8-10 hours work per week?
Outline

• The editorial process (GRL-centric)

• Tips for authors:
 – Submission
 – Revising
 – Dealing with rejection
 – Authorship.
The real review process

1. minor revisions
 • goes back to authors
 • they revise
 • revisions usually just assessed by editor

2. major revisions
 • goes back to authors
 • they revise
 • revised version goes back to reviewer(s)

3. reject

Paper submitted, editor scans
looks borderline
second careful read
still no good
reject without review

Send for review
find at least 2 reviewers

Journal nags reviewers

Editor assesses reviews
looks ok
not so bad
GRL performance (2009-2014)

Target:
RWOR decision time < 7 days
overall turnaround time < 25-30 days
Home Page for Peter G. Strutton

Author Tasks

Author Instructions
Submit Manuscript

Post Decision Manuscripts (1)

Editor Tasks

Editor Instructions
Associate Editor Keyword(s) Report
Find Manuscript
Find Person
Reports

Awaiting Associate Editor Assignment 0 Ed

Awaiting Editor Decision 2 Ed

All Pending Manuscripts 15 Ed

Waiting for Revision 1 Ed
<table>
<thead>
<tr>
<th>Manuscript Items</th>
<th>File</th>
<th>Tasks</th>
<th>History</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Merged file containing manuscript text and 3 figure files. PDF (33408K)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Figure 1 (3215K)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Figure 2 (987K)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Figure 3 (345K)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Manuscript Workflow Tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Editor Decision (2 received / 2 assigned / 2 deleted)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Manuscript #</th>
<th>20200203623</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Revision</td>
<td>2</td>
</tr>
<tr>
<td>Former Manuscript Note</td>
<td>Chris McCarney 2013-09-30 8 pages</td>
</tr>
<tr>
<td>Submission Date</td>
<td>2012-08-22 11:45:16</td>
</tr>
<tr>
<td>Current Stage</td>
<td>Peer Review Stage</td>
</tr>
<tr>
<td>Title</td>
<td>[Redacted]</td>
</tr>
<tr>
<td>Manuscript Type</td>
<td>[Redacted]</td>
</tr>
<tr>
<td>Special Section</td>
<td>[Redacted]</td>
</tr>
<tr>
<td>Corresponding Author</td>
<td>[Redacted]</td>
</tr>
<tr>
<td>Contributing Authors</td>
<td>[Redacted]</td>
</tr>
<tr>
<td>Abstract</td>
<td>[Redacted]</td>
</tr>
<tr>
<td>Associate Editor</td>
<td>[Redacted]</td>
</tr>
<tr>
<td>Editor</td>
<td>[Redacted]</td>
</tr>
<tr>
<td>Reviews</td>
<td>[Redacted]</td>
</tr>
<tr>
<td>Suggested Reviewers to Include</td>
<td>[Redacted]</td>
</tr>
<tr>
<td>Suggested Reviewers to Exclude</td>
<td>[Redacted]</td>
</tr>
<tr>
<td>Suggested Keywords</td>
<td>[Redacted]</td>
</tr>
<tr>
<td>Subject Terms</td>
<td>[Redacted]</td>
</tr>
<tr>
<td>Notes</td>
<td>[Redacted]</td>
</tr>
<tr>
<td>Open Access</td>
<td>[Redacted]</td>
</tr>
<tr>
<td>Dual Publication</td>
<td>[Redacted]</td>
</tr>
<tr>
<td>Contributing Author Notification</td>
<td>[Redacted]</td>
</tr>
<tr>
<td>Question 1: *Major Topic or Scientific Question</td>
<td>[Redacted]</td>
</tr>
<tr>
<td>Question 2: *New Scientific Knowledge</td>
<td>[Redacted]</td>
</tr>
<tr>
<td>Question 3: *Broad Implications</td>
<td>[Redacted]</td>
</tr>
<tr>
<td>Related Manuscript</td>
<td>[Redacted]</td>
</tr>
<tr>
<td>Key Points</td>
<td>[Redacted]</td>
</tr>
</tbody>
</table>

Cover letter would go here
Cover letters are important

November 26, 2002

Editor
Nature Genetics
345 Park Avenue South, 10th Floor
New York, NY 10010-1707
USA

Dear Editor,

It is not clear why a cover letter is required except to fulfill the silly British preoccupation with letterhead and other emblems of status.
Please accept my correspondence.

Sincerely,

This slide borrowed from Michael White, Nature
What should the cover letter do?

• Highlight the main points of the manuscript
• What is new and/or innovative?
 – Perhaps including what is hot in this field
• Why is the ms appropriate to the journal
 – Perhaps past history of similar papers
• Suggested reviewers
 – (although this is usually covered elsewhere online)
• Suggested reviewers to avoid
 – But go easy, perhaps explain why
Cover letter:
What makes this a great paper?

- Discovery
- Major revision to our understanding
- Resolution of a controversy
- Timely – immediate relevance
- Unsurprising but important quantifications
The Gamburtsev mountains and the origin and early evolution of the Antarctic Ice Sheet

Sun Bo, Martin J. Siegert, Simon M. Mudd, David Sugden, Shuji Fujita, Cui Xiangbin, Jiang Yunyun, Tang Xueyaun & Li Yuansheng

Ice-sheet development in Antarctica was a result of significant and rapid global climate change about 34 million years ago. Ice-sheet and climate modelling suggest reductions in atmospheric carbon dioxide (less than three times the pre-industrial level of 280 parts per million by volume) that, in conjunction with the development of the Antarctic Circumpolar Current, led to cooling and glaciation paced by changes in Earth’s orbit. Based on the present subglacial topography, numerical models point to ice-sheet genesis on mountain massifs of Antarctica, including the Gamburtsev mountains at Dome A, the centre of the present ice sheet. Our lack of knowledge of the present-day topography of the Gamburtsev mountains means, however, that the nature of early glaciation and subsequent development of a continental-sized ice sheet are uncertain. Here we present radar information about the base of the ice at Dome A, revealing classic Alpine topography with pre-existing river valleys overdeepened by valley glaciers formed when the mean summer surface temperature was around 3°C. This landscape is likely to have developed during the initial phases of Antarctic glaciation. According to Antarctic climate history (estimated from offshore sediment records) the Gamburtsev mountains are probably older than 34 million years and were the main centre for ice-sheet growth. Moreover, the landscape has most probably been preserved beneath the present ice sheet for around 14 million years.

Deep-sea oxygen isotope records show that the Eocene and Oligocene epochs represent times of global cooling culminating in the development of the first Antarctic Ice Sheet and an important expansion of Antarctic ice volume.4 The Eocene (−52 to −34 million years ago) is characterized by a global cooling trend which continued during the remainder of the Cenozoic era. Subsequently there were two stepped changes in the rate of cooling. The first, at the Eocene-Oligocene boundary −34 Myr ago, saw the onset of significant glaciation in Antarctica. The second, −14 Myr ago, is recorded by a 6–7°C cooling in the marine isotope record4 and in terrestrial evidence of cooling of at least 8°C in the Transantarctic mountains.

Two approaches to modelling the initial growth of the Antarctic Ice Sheet show that glaciation begins in the upland mountain massifs of Antarctica, at coastal Dronning Maud Land, the Transantarctic mountains, and the Gamburtsev mountains beneath Dome A.10 This continental-scale glaciation dominates glaciation because of its high altitude and consequent cold surface temperatures. Ice-sheet modelling, ocean cores and stratigraphic evidence suggest that for 20 million years, from 34 to 14 Myr ago, Antarctica experienced essentially driven ice-volume fluctuations similar in scale to those of the Pleistocene ice sheets of the Northern Hemisphere and that these fluctuations were oscillating globally as a unit.12,13 During this time, the Sermeq glacier survived at high altitudes during this period. After 14 Myr the ice sheet, at least in higher mountain peripheries in East Antarctica, maintained its presence and control over the cold polar climate of today, leading to extremely low rates of erosion, cold-based local glaciers and even the preservation of buried Miocene ice.

Our knowledge of the subglacial topography at Dome A has been obtained during only one radar flight in the 1970s19–20. Consequently, the present form and evolution of the Gamburtsev mountains are poorly understood, making models of ice-sheet inception problematic. Indeed, the morphology of the mountains is less well known than the surface of Mars. In seasons 2004/05 and 2007/08, Chinese glaciologists made the first detailed radar survey of the Gamburtsev mountains (as part of the International Polar Year programme Chinese Antarctic Research Expedition (CHINARE). The bed was detected in the majority of radar lines (Fig. 1), and by subtracting ice thickness from surface elevation (measured by GPS) the elevation of the bed could be found. The bed elevations were then interpolated onto a regular grid with pixel resolution of 140.5 m (see Methods Summary and Supplementary Methods for interpolation details). The unprecedented density of radar transects in this region means that the resulting Digital Elevation Model (DEM) provides the first detailed depiction of the topography of the central Gamburtsev mountains (Fig. 2).

The topography revealed beneath the ice is striking (Fig. 2 and Supplementary Fig. 1). The region consists of a south-facing elongated valley head, cutting over a kilometre into flanking mountains. The whole region is covered by ice 1.649–3.335 m thick. The maximum elevation of the topography is 2,634 m above sea level at 80°18′ S, 76°10′ E. The valley geometry is dendritic. We highlight this geometry by extracting a drainage network using standard methods4 (Fig. 2, Supplementary Discussion 1). Recent numerical modelling, backed by empirical observations, has shown that ice cannot create such networks alone; subglacial topography takes this form only when ice exploits pre-existing fluvial topography (Supplementary Fig. 2).14

This fluvial landscape has subsequently been subject to intense valley glaciation, as demonstrated by overdeepening in the valley floors of up to 432 m and the presence of steep trough sides. It is also shown by details such as the location of overdeepened basins at points of valley convergence, staircases of intervening riegel or valley steps, hanging tributary valleys, and crevices with steep acoustic cliffs and flat floors at the head of some tributary valleys (Fig. 3); such features are characteristic of landscapes shaped by valley glaciers.15,16 Hanging valleys are formed when ice ponds in tributary glaciers as they enter the trunk glacier; this pending leads to reduced ice surface slopes, which in turn reduces shear stress and sliding velocities at the glacier bed, ultimately reducing erosive capacity in the tributary glacier.15,16 Another effect of
Major revision to our understanding
Resolution of a controversy

Holocene thinning of the Greenland ice sheet

B. M. Vinther1, S. L. Buchardt1, H. B. Clausen1, D. Dahl-Jensen1, S. J. Johnsen1, D. A. Fisher2, R. M. Koerner2, D. Raynaud3, V. Lifonkov4, K. K. Andersen1, T. Blume1, S. O. Rasmussen1, J. P. Steffensen1 & A. M. Svensson1

On entering an era of global warming, the stability of the Greenland ice sheet (GIS) is an important concern, especially in the light of new evidence of rapidly changing flow and melt conditions at the GIS margins. Studying the response of the GIS to past climatic change may help to advance our understanding of GIS dynamics. The previous interpretations of evidence from stable isotopes (δ18O) in water from GIS ice cores was that Holocene climate variability on the GIS differed spatially and that a consistent Holocene climatic optimum—closely resembling the warm period from about 9,000 to 6,000 years ago found in many northern-latitude palaeoclimate records—did not exist. Here we extract both the Greenland Holocene temperature history and the evolution of GIS surface elevation at four GIS locations. We achieve this by comparing δ18O from GIS ice cores5,6 with δ18O from ice cores from small marginal icecaps. Contrary to the earlier interpretation of δ18O evidence from ice cores, our new temperature history reveals a pronounced Holocene climatic optimum in Greenland coinciding with maximum thinning near the GIS margins. Our δ18O-based results are corroborated by the air content of ice cores, a proxy for surface elevation. State-of-the-art ice sheet models are generally found to be underestimating the extent and changes in GIS elevation and area; our findings may help to improve the ability of models to reproduce the GIS response to Holocene climate.

Ice cores from six locations have now been synchronised to the Greenland Ice Core Chronology 2005 (GICC05) throughout the Holocene epoch (Fig. 1a). The GICC05 annual layer counting was performed simultaneously on the DYE-3, GRIP and NGRIP ice cores for the Agassiz8, Rendzland6 and Camp Century ice cores the timescale was transferred by using volcanic markers identifiable in electrical conductivity measurements19 (Supplementary Information). The six synchronised Holocene δ18O records show large differences in millennial scale trends (Fig. 1b). All δ18O records were obtained in the same laboratory (the Copenhagen Isotope Laboratory), ensuring maximum confidence in the homogeneity of the data sets. The differences are therefore real features that need to be understood and explained before firm conclusions about the evolution of Greenland climate during the Holocene can be supported by the data.

Changes in regional temperatures, moisture source regions, moisture transport and precipitation seasonality affect the δ18O of precipitation17. However, all these parameters are expected to produce regional patterns of change, implying that trends in nearby δ18O records should always be similar, except where the records are heavily influenced by a combination of ice flow and post-deposition phenomena, such as wind-sieving. Ice cores from Agassiz and Rendzland are retrieved from icecap domes and are therefore not influenced by ice flow. The Camp Century site is only slightly affected by a steady ice flow, yet the trends in the neighbouring Agassiz and Camp Century cores are dissimilar; in fact, the δ18O signal at Agassiz is much more similar to the signal recorded at Rendzland on the other side of the GIS.

©2009 Macmillan Publishers Limited. All rights reserved
Timely – immediate relevance
More than 100 countries have adopted a global warming limit of 2 °C or below (relative to pre-industrial levels) as a guiding principle for mitigation efforts to reduce climate risks, impacts and damages. However, the greenhouse gas (GHG) emissions corresponding to a specified maximum warming are poorly known owing to uncertainties in the carbon cycle and the climate response. Here we provide a comprehensive probabilistic analysis aimed at quantifying GHG emission budgets for the 2000–50 period that would limit warming throughout the twenty-first century to below 2 °C, based on a combination of published distributions of climate system properties and observational constraints. We show that, for the chosen class of emission scenarios, both cumulative emissions up to 2050 and emission levels in 2050 are robust indicators of the probability that twenty-first century warming will not exceed 2 °C relative to pre-industrial temperatures. Limiting cumulative CO2 emissions over 2000–50 to 1,000 Gt CO2 yields a 25% probability of warming exceeding 2 °C—and a limit of 1,440 Gt CO2 yields a 50% probability—given a representative estimate of the distribution of climate system properties. As known 2000–06 CO2 emissions were ~254 Gt CO2, less than half the proven economi-cally recoverable oil, gas and coal reserves19 can still be emitted up to 2050 to achieve such a goal. Recent G8 Communiqué envisages halved global GHG emissions by 2050, for which we estimate a 12–45% probability of exceeding 2 °C—assuming 1990 as emission base year and a range of published climate sensitivity distributions. Emissions levels in 2020 are a less robust indicator, but for the scenarios considered, the probability of exceeding 2 °C rises to 55–87% if global GHG emissions are still more than 25% above 2000 levels in 2020.

Defining probabilistic climate change for future emission scenarios is challenging, as it requires a synthesis of uncertainties along the cause–effect chain from emissions to temperatures; for example, uncertainties in the carbon cycle, radiative forcing and climate responses. Uncertainties in future climate projections can be quantified by constraining climate model parameters to reproduce historical relationships between radiative forcing, observations of temperature, ocean heat uptake20 and independent estimates of radiative forcing. By focusing on emission budgets (the cumulative emissions to stay below a certain warming level) and their probabilistic implications for the climate, we build on pioneering mitigation studies21. Previous probabilistic studies—while sometimes based on more complex models—either considered uncertainties only in a few forcing components22, applied relatively simple likelihood estimators ignoring the correlation structure of the observational errors23 or constrained only model parameters like climate sensitivity rather than allowed emissions.

Using a reduced complexity coupled carbon cycle–climate model24, we constrain future climate projections, building on the Fourth IPCC Assessment Report (AR4) and more recent research. In particular, multiple uncertainties in the historical temperature observations2 are treated separately for the first time; new ocean heat uptake estimates are incorporated25, a constraint on changes in effective climate sensitivity is introduced, and the most recent radiative forcing uncertainty estimates for individual forcing agents are considered26. The data constraints provide us with likelihood estimates for the chosen 82-dimensional space of climate response, gas-cycle and radiative forcing parameters (Supplementary Fig. 3). We chose a Bayesian approach, but also obtain ‘frequentist’ confidence intervals for climate sensitivity (68% interval, 2.3–4.5 °C; 90%, 2.1–7.1 °C), which is in approximate agreement with the recent AR4 estimates. Given the inherent subjectivity of Bayesian priors, we chose priors for climate sensitivity such that we obtain marginal posteriors identical to 19 published climate sensitivity distributions (Supplementary Information). These distributions are not all independent and not equally likely, and cannot be formally combined. They are used here simply to represent the variety of modeling approaches, observational data and likelihood derivations used in previous studies, whose implications for an emission budget have not been analysed before. For illustrative purposes, we chose the climate sensitivity distribution of ref. 19 with a uniform prior in transient climate response (TCR, defined as the global-mean temperature change which occurs at the time of CO2 doubling for the specific case of a 1% yr−1 increase of CO2) as our default. This distribution closely resembles the AR4 estimate (best estimate, 3 °C; likely range, 2.0–4.5 °C) (Supplementary Information).

Maximal warming under low emission scenarios is more closely related to the TCR than to the climate sensitivity27. The distribution of the TCR of our climate model for the illustrative default is slightly lower than derived within another model set-up28, but within the range of results of previous studies (Fig. 1b), and encompasses the range arising from emissions by coupled atmosphere-ocean general circulation models29 (AOGCMs) (Fig. 1c).

Representing current knowledge on future carbon-cycle responses is difficult, and might be best encapsulated in the wide range of results from the process-based CAMIP carbon-cycle models27. We emulate these CAMIP models individually by calibrating 18 parameters in our carbon-cycle model27, and combine these settings with the other carbon cycles, radiative forcing and climate response parameter uncertainties gained from our historical constraining.

Additional challenges arise in estimating the maximum temperature change resulting from a certain amount of cumulative emissions. The analysis needs to be based on a multitude of emission pathways with realistic multi-gas characteristics27, as well as varying
Influence of the Pacific Decadel Oscillation on phytoplankton phenology and community structure in the western North Pacific based on satellite observation and the Continuous Plankton Recorder survey for 2001-2009

versus

Influence of the Pacific Decadal Oscillation on phytoplankton phenology and community structure in the western North Pacific

Or maybe even better?

The Pacific Decadal Oscillation impacts phytoplankton phenology and community structure.
What makes a good title?

• Accurate and concise
• Interesting (ok to omit boring details)
• Not too specific (avoid technical terms)
• Not too regional
• Maybe catchy without being too cute
The 2011 La Niña: So strong, the oceans fell

Camen Boening,1 Josh K. Willis,1 Felix W. Landerer,1 R. Steven Nerem,1 and John Fasullo3

Received 20 July 2012; revised 20 August 2012; accepted 29 August 2012; published 4 October 2012.

1Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA.
2Colorado Center for Astrodynamics Research, University of Colorado at Boulder, Boulder, Colorado, USA.
3National Center for Atmospheric Research, Boulder, Colorado, USA.

Corresponding author: C. Boening, Jet Propulsion Laboratory, California Institute of Technology, 400 Oak Grove Dr., Pasadena, CA 91109, USA.
Email: boening@jpl.nasa.gov

© 2012 American Geophysical Union. All Rights Reserved.
0094-8276/12/DOI:10.1029/2012GL053055

1. In [1] C gauge-1 increase in year, we record already for modiﬁcation of modern anthrop [1] have in effect rate of rate of
2. The new of sea level change, and the relative importance of heat exchange and water mass transport. Previous studies either inferred the relative contributions [Willis et al., 2004] or modeled one of the components [Lovel et al., 2011; Case et al., 2005; Noguchi et al., 2005]. Little et al. [2011] also discuss the correlation between interannual sea level variations and GRACE derived terrestrial water storage from the 33 largest river basins. In particular, water storage variability in tropical river basins is identiﬁed to be strongly related to global ocean mass changes.

[1] In the past, it has been complicated to draw a conclusive, fully observed connection between these interannual sea level variations and ENSO due to a) missing or insuﬁcient observations before 2005 b) signiﬁcant ENSO events during the time where sufﬁcient data are available. However, satellite altimetry observations will become a key indicator of anthropogenic inﬂuence on the global climate.

[2] Recent studies have indicated that anthropogenic forcing in GMASL are connected to the tropical El Niño Southern Oscillation (ENSO) [Nerem et al., 2010; Noguchi et al., 2005], which inﬂuences ocean surface temperatures in the tropical Paciﬁc as well as evaporation and precipitation patterns globally [Gut et al., 2007]. ENSO is known to control the largest year-to-year climate signal on the planet [MaPhad et al., 2006]. Strong El Niño events have the potential to temporarily increase global sea level [Noguchi et al., 2005; Case et al., 2012] whereas in the cold La Niña phase the opposite occurs and sea level may see a pronounced decrease in sea level.

1. In [1] C gauge-1 increase in year, we record already for modiﬁcation of modern anthrop [1] have in effect rate of rate of
Important things to get right

• Title and abstract

• Figures
 – Present (!)
 – Quality images
 – Informative figure legends

• References
 – because editors look there for reviewers when the ones you suggest have declined
Editor decision
Editor decision

I find this a very important and enlightening paper dealing with ... It is of fundamental international concern ... The manuscript is very well written and revealing... My recommendation is to accept it for publication, pending some minor clarifications.

versus

I do not consider the authors present robust evidence and analyses to support their conclusions. In addition, I found several major flaws. For both these reasons, I think this paper should be rejected for publication. I also note that there are 10 authors listed for this paper and find it surprising that none have picked up on what, to me, are fairly obvious errors and inconsistencies.
What happens after reviews are in?

• Accept as is
 – Never happens

• ‘Minor revision’
 – 2 week turnaround (GRL), usually doesn’t go back to reviewers, response document is crucial

• ‘Major revision’
 – aka reject and encourage resubmit: Authors get 6 months, usually goes back to at least one reviewer

• Reject (~15 to 30% of papers)
Dealing with rejection

• It’s ok to challenge the editor’s decision
 – Consult with co-authors
 – Were the reviewers off-base?
 – Was the decision inconsistent with the reviews or the ranking system, or both?
 – Be civil

• It happens to everyone
• ‘If you never have a paper rejected, you’re not aiming high enough’
The response to reviewers document

Make it as easy as possible for the editor

• We want happy editors
• May mean that it doesn’t go back out
• May speed the process

Tread a fine line with the reviewers: Pick your battles and don’t be too sycophantic
The response to reviewers document:
Don’t just say you’ve fixed it, show how

One other major flaw of the paper is the total lack of question and/or hypothesis to justify the work done. As a result, I have not learned much by reading this paper. I see no major (and solid) result there that actually improves our understanding of phytoplankton blooms or marine ecosystem interactions.

The introduction, results and discussion have all been reworked to emphasize the three main themes of the manuscript: (1) examine the relationships between mixed layer variability and bloom dynamics (2) determine whether bio-optical data can be used to describe changes in the phytoplankton community over the course of the bloom, and (3) compare the in situ data to their satellite equivalents. The significance of these goals is described in the introduction thus: ‘Goal (1) is important because of the region’s status as a globally significant carbon sink that has received relatively little attention in terms of focused process studies. It addresses interannual variability and factors limiting the bloom at its peak. Goal (2) is relevant to nascent ocean observing systems, because it provides an example of interpreting bio-optical data in the context of phytoplankton community composition. Goal (3) quantifies the accuracy of satellite measurements for high latitude systems.’
Journal choice

- Timeliness (especially for ECRs)
- Impact factor
- Where similar work has been published
 - Probably less relevant now given how papers are discovered

- A searchable title is probably becoming more important than the journal?
Timeliness: Average time to accept (old data)

<table>
<thead>
<tr>
<th>Journal</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013 Q1-Q3</th>
</tr>
</thead>
<tbody>
<tr>
<td>GBC</td>
<td>225</td>
<td>338</td>
<td>321</td>
<td>299</td>
</tr>
<tr>
<td>GC</td>
<td>113</td>
<td>112</td>
<td>114</td>
<td>115</td>
</tr>
<tr>
<td>GRL</td>
<td>45</td>
<td>42</td>
<td>43</td>
<td>43</td>
</tr>
<tr>
<td>JGR-A (Space Physics)</td>
<td>123</td>
<td>128</td>
<td>132</td>
<td>143</td>
</tr>
<tr>
<td>JGE-B (Solid Earth)</td>
<td>198</td>
<td>171</td>
<td>163</td>
<td>177</td>
</tr>
<tr>
<td>JGR-C (Oceans)</td>
<td>188</td>
<td>174</td>
<td>178</td>
<td>167</td>
</tr>
<tr>
<td>JGR-D (Atmospheres)</td>
<td>163</td>
<td>144</td>
<td>153</td>
<td>165</td>
</tr>
<tr>
<td>JGR-E (Planets)</td>
<td>152</td>
<td>161</td>
<td>152</td>
<td>161</td>
</tr>
<tr>
<td>JGR-F (Earth Surface)</td>
<td>227</td>
<td>224</td>
<td>226</td>
<td>240</td>
</tr>
<tr>
<td>JGR-G (Biogeosciences)</td>
<td>207</td>
<td>186</td>
<td>178</td>
<td>190</td>
</tr>
<tr>
<td>JAMES</td>
<td></td>
<td></td>
<td></td>
<td>70</td>
</tr>
<tr>
<td>Paleo</td>
<td>233</td>
<td>205</td>
<td>157</td>
<td>206</td>
</tr>
<tr>
<td>RoG</td>
<td></td>
<td></td>
<td></td>
<td>188</td>
</tr>
<tr>
<td>RS</td>
<td>197</td>
<td>165</td>
<td>167</td>
<td>179</td>
</tr>
<tr>
<td>SW</td>
<td></td>
<td></td>
<td></td>
<td>56</td>
</tr>
<tr>
<td>Tec</td>
<td>218</td>
<td>200</td>
<td>201</td>
<td>202</td>
</tr>
<tr>
<td>WRR</td>
<td>231</td>
<td>240</td>
<td>240</td>
<td>272</td>
</tr>
</tbody>
</table>
Authorship: Who qualifies?

Attribution of authorship depends to some extent on the discipline, but must be based on substantial contributions in a combination of:

• conception and design of the project
• analysis and interpretation of data
• drafting significant parts of the work or critically revising it so as to contribute to the interpretation.

Authorship: Who qualifies?

- Agree on authorship early and revisit as appropriate
- Offer authorship to all those who meet the criteria above
- Do not allow unacceptable inclusions of authorship: positions of authority, personal friendship, technical but not intellectual input to the project or publication, acquisition of funding or general supervision of the research team, providing data that has already been published but no other intellectual input.
- Acknowledge other contributions fairly

Authorship: Who qualifies?

https://www.nature.com/naturejobs/science/articles/10.1038/nj7417-591a
Box 1: Aggravation-free authorship

When many scientists work together, determining authorship isn't always easy. Here are some tips for settling the line-up.

- Make sure that you choose collaborators with whom you can work well.
- Discuss authorship early, and keep doing so often as a project evolves. Put it in writing.
- When there are disputes, first try to talk it out amicably and understand the other person's point of view. For example, try to work out how the idea first came about.
- If you must approach your supervisor about an authorship decision that you don't like, keep the tone inquisitive, not accusatory. Explain that you want to understand how authorship was decided.
- If a contributor's authorship is in question, it can help to consider what the paper would have looked like without their efforts, and whether someone else could have made the same contribution.
- Familiarize yourself with your institution's or journal's authorship guidelines, or those of the International Committee of Medical Journal Editors. Use them to back up your case.
- Be prepared to compromise or share credit.
- If you can't agree among yourselves, engage a supervisor, trusted colleagues or an ombudsman to investigate the matter and make a recommendation. A.D.
Summary

• Take care of details: Title, cover letter, suggested reviewers (inc. reference list)
• Consider choice of journal: Impact, readership, speed of review process.
• Be a good citizen (conscientious reviewer)
• Use departmental resources for publicity
• Be able to succinctly explain your work
 – 3 main points