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Observations	indicate	higher	global	temperature	
associated	with	more	intense	precipitation	extremes

gauges and partly because of the uneven distribution of
land areas and oceans; this should also be taken into
account when interpreting the results.

Considering first the fraction of stations exhibiting
significant increases (Fig. 12, middle), it can be seen that
there are some clear meridional variations, with the
largest proportion of stations that have positive associ-
ation with global mean near-surface temperature lo-
cated near the equator and a second maxima at about
558N. The two locations with the minimum fraction of
significant positive associations are at 158S and 68N. It is
noted that the resampling methodology takes the lower
sample sizes near the equator into account, with the
confidence interval being much wider in the less well
gauged parts of the domain. The results of our analysis
are reasonably consistent with the model-derived results
under a future greenhouse gas–enhanced climate (Kharin
et al. 2007), except that the latitudes with the minimum
fraction of positive associations are closer to the equator
compared with the modeling studies.

Finally, we plot the median estimate of the sensitivity
of annual extreme precipitation per kelvin warming by
latitude (Fig. 12, bottom). The general pattern reflects
the conclusions of the middle panel, with the largest
positive associations near the equator and a second
maxima occurring in the higher latitudes of the North-
ern Hemisphere. Minima exist at 138S and 118N, and
both these minima are not statistically significantly dif-
ferent from the null hypothesis, which is that there is no
trend at these latitudes.

4) IMPLICATIONS WHEN USING DIFFERENT DATA

PERIODS

All of the results from the preceding analysis were
based on the set of stations between 1900 and 2009 with
at least 30 years of data, with the median number of
years per station in this dataset being 53 years. As dis-
cussed in section 2, the number of stations with rainfall
data increased significantly in the first half of the twen-
tieth century, plateauing from about 1960. Therefore,
the majority of the dataset is likely to be from the latter
part of the record, although sequences from the early
part of the twentieth century are also included in the
analysis.

To ensure that the results are not substantially influ-
enced by the period of record or the median length of
record, we conduct the analysis on different subsets of
data, summarized in Table 1. The first three analyses
consider the full period from 1900 to 2009 but use dif-
ferent thresholds for the minimum record length. The
last two analyses are for the different periods of record,
with the first 60 years of the twentieth century compared
with the last 40 years of the twentieth century and the
first 10 years of the twenty-first century.

Considering the first three analyses, it can be seen in
Table 1 that by increasing the minimum number of years
to be analyzed from 30 to 70 years, the number of sta-
tions meeting this minimum threshold drops dramati-
cally from 8326 stations to 2124 stations. Interestingly,
the percentage of stations with positive associations, and

FIG. 11. Global median of estimates of the local sensitivity of annual precipitation extremes
to a 1-K increase in global mean near-surface temperature. The histogram represents the
distribution of results from 1000 bootstrap realizations of the global annual maximum rainfall
data, and the red dot represents the value from the observed data.
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Observational	estimate	of	sensitivity	of	precipitation	extremes	to	global-mean	temperature	
(From	Westra et	al.,	2013)
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Climate	model	simulations	also	predict	future	
increases	in	the	intensity	of	precipitation	extremes

Multi-model	mean	across	22	CMIP5	models	under	the	RCP8.5	scenario.	Stipling where	80%	of	
models	agree	on	sign	of	change

(From	Pfahl et	al.,	2017)

Change	in	annual-maximum	daily	precipitation	per	unit	global	warming



•Why	do	we	expect	precipitation	extremes	to	
increase	with	warming?

•What	sets	the	magnitude	and	spatial	pattern	
of	changes	in	precipitation	extremes?

•Why	do	models	disagree	on	the	magnitude	of	
future	changes	in	precipitation	extremes?



What	sets	the	precipitation	rate?



What	sets	the	precipitation	rate?
Global-mean	precipitation



What	sets	the	precipitation	rate?

• The	global-mean	precipitation	
rate	is	set	by	the	energy	
budget	of	the	atmosphere

• This	increases	at	roughly	2-3%	
per	Kelvin	global	warming	
(Allen	&	Ingram,	2003)
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What	sets	the	precipitation	rate?
What	about	precipitation	extremes?



What	sets	the	precipitation	rate?
What	about	precipitation	extremes?

• Heaviest	rainfall	constrained	by	available	water	
vapour?	(Trenberth,	1999)

Can	we	make	this	a	bit	more	quantitative?
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A	theory	for	precipitation	extremes

Consider	a	large-scale	precipitation	extreme	event.

For	saturated	air,	the	condensation	rate	may	be	approximated

𝑐 ≈ −
𝐷𝑞&
𝐷𝑡

. 				(1)

Note	that	𝑞& is	a	thermodynamic	function,	and	it	may	be	written,

𝑞& = 𝑞& 𝑝, 𝜃1∗ ,

where	𝜃1∗ is	the	saturation	equivalent	potential	temperature



A	theory	for	precipitation	extremes

We	assume	that,	during	an	extreme	event,	the	latent	heating	term	dominates	the	
thermodynamic	equation	so	that,	

𝐷𝜃1∗

𝐷𝑡
≈ 0. 					(2)

This	allows	us	to	write	the	condensation	rate

𝑐 = −
𝐷𝑝
𝐷𝑡

𝑑𝑞&
𝑑𝑝

6
78∗
= −𝜔

𝑑𝑞&
𝑑𝑝

6
78∗
. 				(3)



Derivatives	along	a	moist	adiabat

The	derivative	with	respect	to	
saturation	humidity	is	taken	
along	a	moist	adiabat:

𝑑𝑞&
𝑑𝑝

6
78∗
.

It	increases	with	temperature,	
but	not	as	rapidly	as	the	
saturation	humidity	itself.

c ; v
cpT

Lu

du

dp

!!!!
u*

. (3)

This expression clearly shows the thermodynamic bal-
ance between the condensation rate (and its associated
latent heating Lc) and the adiabatic cooling associated
with upward motion. The static stability du/dpju* in-
creases with increasing temperature, but it does so at
a smaller fractional growth rate than saturation water
vapor, which is an alternative view of why the conden-
sation rate increases less rapidly with temperature than
Clausius–Clapeyron scaling would suggest.

A scaling for precipitation extremes can be obtained
from Eq. (1) by assuming that the surface precipitation
rate is proportional to the vertically integrated con-
densation rate, and by scaling the extreme upward ve-
locity with the root-mean-square eddy vertical velocity
vrms. The use of vrms will not capture non-Gaussian
changes in high-order statistics of the vertical velocity,
but it should be adequate to capture some changes that
accompany climate change, such as a meridional shift of
the storm tracks (Yin 2005) or a decrease in tropical
convective mass fluxes (Betts 1998; Held and Soden
2006). The resulting precipitation extremes scaling is

Pe ;
ðps

pt

dp
g vrms

dqs

dp

!!!!
u*,Te

, (4)

where Pe is a high percentile of precipitation (say the
99.9th percentile), the pressure integral is from the tro-
popause pressure pt to the surface pressure ps, and g is
the acceleration due to gravity. The moist-adiabatic de-

rivative of saturation specific humidity at each latitude and
level is not evaluated at the local mean temperature, but at
Te, the local mean temperature conditioned on precip-
itation (at the surface) equaling the precipitation percen-
tile. This allows for the possibility that the temperature at
which precipitation extremes occur does not scale with the
climatological mean temperature. Note that the tempera-
ture Te at a given level and latitude and for a given per-
centile of precipitation will generally not be equal to the
corresponding percentile of the temperature distribution.

In the tropics, if the variation of vrms is neglected, then
the scaling (4) approximately obeys Clausius–Clapeyron
scaling with respect to surface temperature. This is because
the mean thermal stratification is approximately moist adi-
abatic in the tropics, and so the moist-adiabatic derivative
of saturation specific humidity can be integrated with re-
spect to pressure to give the surface saturation specific
humidity (if the saturation specific humidity at the tropo-
pause and the vertical variation of vrms are neglected). The
surface saturation specific humidity does not scale with
column water vapor because of different temperature
changes at different levels, which imply different specific
humidity changes at different levels if the relative humidity
is approximately invariant. Clausius–Clapeyron scaling
with respect to surface temperature is a useful conceptual
simplification for the scaling of tropical precipitation ex-
tremes, but changes in vertical velocity statistics in the
tropics generally cannot be neglected, and there is no
general basis for such a simplification in the extratropics.

In summary, the precipitation extremes scaling (4) need
not obey Clausius–Clapeyron scaling (using mean tem-
perature changes and column saturation water vapor con-
tent) because of changes in the moist-adiabatic lapse rate
and possible changes in vertical velocity statistics, and if the
temperature Te does not scale with the mean temperature.

b. Application to GCM simulations

We apply the precipitation extremes scaling (4) at each
latitude to the zonally and temporally averaged statistics
of the idealized GCM. The GCM uses a sigma (s) co-
ordinate system, and so a sigma-coordinate formulation
of the scaling is evaluated.4 We use the simplified moist

FIG. 6. Saturation specific humidity (solid) and the rescaled
moist-adiabatic derivative of saturation specific humidity dqs/dpju*

(dashed). Both quantities are evaluated at a pressure of 800 hPa.
The moist-adiabatic derivative of saturation specific humidity has
been rescaled by a dimensional constant so that it agrees with the
saturation specific humidity at the lowest temperature shown. At
280 K, the fractional rate of increase in saturation specific humidity
is 6.9% K21, compared with 3.0% K21 for the moist-adiabatic
derivative of saturation specific humidity.

4 The rms eddy pressure velocity vrms is replaced with the rms
eddy sigma velocity _srms multiplied by a reference surface pressure
p0 5 105 Pa. The pressure integral is replaced by p0 multiplied by
an integral in sigma from the surface to the global-mean level of the
tropopause (see footnote 1). Use of the local tropopause level at
each latitude gives similar results. The moist-adiabatic derivative of
saturation specific humidity is evaluated on sigma levels at the
precipitation extremes temperature Te but at the zonal and time
mean pressure. Eddy quantities such as _srms are derived from
4-times-daily instantaneous model output; precipitation and Te are
based on daily averaged values.
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From	O’Gorman	&	Schneider,	2009



A	theory	for	precipitation	extremes

Now,	we	relate	the	precipitation	rate	𝑃 to	the	vertically	integrated	
condensation	rate	by	an	efficiency	𝜖 so	that,

𝑃 = −𝜖=𝜔
𝑑𝑞&
𝑑𝑝

6
78∗

�

�

𝑑𝑝
𝑔
. 				(4)

where	all	quantities	are	evaluated	at	the	time	of	the	extreme	event

Note:	the	efficiency	accounts	for	the	microphysical	processes	that	
convert	condensation	into	precipitation,	as	well	as	the	
approximations	used	to	estimate	the	condensation	rate.



A	theory	for	precipitation	extremes

Assume:	

1)	the	vertical	velocity	profile	is	constant	apart	from	
near	the	surface	and	at	the	tropopause

2)	The	atmospheric	thermal	structure	is	roughly	
moist	adiabatic

Then	the	scaling	equation	may	be	integrated	so	that

𝑃 ∝ 𝜖𝜔BCC𝑞& 𝑇EF, 𝑝EF .
𝜔

𝑝

500	hPa



Scaling	of	precipitation	extremes	with	warming

𝛿𝑃
𝑃
≈
𝛿𝜖
𝜖
+
𝛿𝜔BCC
𝜔BCC

+
𝛿𝑞&
𝑞&

.

microphysical dynamical thermodynamical



Simple	thermodynamic	scaling	for	
precipitation	extremes

• If	the	efficiency	and	vertical	velocity	remain	constant,	
precipitation	extremes	scale	with	the	near-surface	saturation	
specific	humidity

• Increases	at	roughly	7%/K	near	the	surface.

• This	is	often	referred	to	as	Clausius-Clapeyron scaling.

• The	approximations	used	to	derive	this	are	not	well	satisfied,	
particularly	outside	the	tropics



A	more	accurate	scaling	for	precipitation	
extremes

More	generally,	we	can	use	the	theoretical	equation	(4):

𝑃 = −𝜖=𝜔
𝑑𝑞&
𝑑𝑝

6
78∗
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�

𝑑𝑝
𝑔

				(4)

to	understand	changes	to	precipitation	extremes

In	particular,	we	assume	the	efficiency	is	independent	of	time	and	space	to	
construct	a	scaling:

𝑃 ∝ =𝜔
𝑑𝑞&
𝑑𝑝

6
78∗

�

�

𝑑𝑝
𝑔
. 						(5)



Scaling	accurately	reproduces	simulated	
precipitation	extremes	in	the	current	climate

Multi-model	mean	over	22	CMIP5	models.	Scaling	calculated	using	(5)	
(from	Pfahl et	al.	2015).

Scaling	requires	knowledge	of	vertical	velocity	and	temperature	on	days	of	
precipitation	extremes



Scaling	also	explains	changes	in	
precipitation	extremes	across	models

Climatology Project (GPCP) (19) (Fig. 1). However, there are
considerable uncertainties in observations of precipitation, and
other studies using different datasets or different measures of
precipitation extremes have found that climate models under-
estimate precipitation extremes relative to observations (10–12,
†). The simulated precipitation extremes increase at all latitudes
as the climate warms, particularly in the tropics where they are
largest (Fig. 1). The water vapor content of the atmosphere also
increases at all latitudes, but precipitation extremes do not scale
with the water vapor content (Fig. 2). In the multimodel median,
precipitation extremes increase with global-mean surface air
temperature at a smaller rate than the zonal-mean atmospheric
water vapor content (Fig. 2). For example, at 60°N, the 99.9th
percentile of daily precipitation increases at 6% K!1 in the
multimodel median, compared with 10% K!1 for the atmo-
spheric water vapor content. (Both rates of increase are nor-
malized by the change in global-mean surface air temperature
for each model before taking the median among all models.)
There is larger intermodel scatter in the tropics than in the
extratropics in both the precipitation extremes and their frac-
tional changes with warming (Figs. 1 and 2).

Precipitation extremes also do not scale with water vapor
content in individual models. Extratropical precipitation ex-
tremes consistently increase less rapidly with surface air tem-
perature than does the extratropical water vapor content (Fig.
3A). The rate of change in tropical precipitation extremes varies
widely among models; changes in tropical precipitation extremes
normalized by the increase in tropical surface air temperature
range from 1.3% K!1 to 30% K!1. (Models with small tropical
increases can be more easily distinguished in Fig. S1, which is the
same as Fig. 3 but with logarithmic axis scales.) In most models,
tropical precipitation extremes increase less rapidly than or at a
similar rate as tropical water vapor content; for two outlying
models (both from GFDL), the increases in tropical precipita-
tion extremes are much greater. The behavior of tropical pre-
cipitation extremes in the GFDL models is also sensitive to the
percentile considered, with close to zero ("1% K!1) changes in
tropical precipitation extremes at the 99th percentile.

Precipitation extremes may occur preferentially in certain
seasons or at certain longitudes. Furthermore, one may hypoth-
esize that precipitation extremes depend on the saturation water
vapor content of the atmosphere when they occur, rather than on

†Models and observations may agree more closely in our study than in some other studies
in part because we use percentiles of precipitation including all days (dry and wet) and
because we spatially average observations to typical model resolution. The precipitation
extremes scaling discussed below implies that if models approximately reproduce the
distribution of vertical velocities but inaccurately simulate the frequency of wet days,
inclusion of all days in the percentile analysis will give the most favorable comparison.

Fig. 2. Fractional changes in the 99.9th percentile of daily precipitation
(blue), zonally averaged atmospheric water vapor content (green), saturation
water vapor content of the troposphere (black dotted), full precipitation
extremes scaling (Eq. 2) (red dashed), and thermodynamic scaling for precip-
itation extremes (black dashed). The lines show multimodel medians of the
fractional changes relative to 20th-century values, normalized by the global-
mean change in surface air temperature for each model. Model scatter is
shown for the fractional change in precipitation extremes using the inter-
quartile range (shading). The saturation water vapor content is calculated
using an average of the climatological monthly-mean temperature over all
times and longitudes at which the extreme precipitation occurs.

A

B

Fig. 3. Fractional changes in the 99.9th percentile of daily precipitation for
each model versus changes in atmospheric water vapor content and scalings
for precipitation extremes. (A) Atmospheric water vapor content (open sym-
bols) and the thermodynamic scaling that neglects changes in upward velocity
(solid symbols). (B) Full scaling for precipitation extremes. The fractional
change are relative to 20th-century values, averaged over the extratropics
(Left) or tropics (Right) and normalized by the change in surface air temper-
ature averaged over the extratropics or tropics. Solid lines correspond to
one-to-one relationships. The extratropics are defined as the regions pole-
ward of 30° latitude, and the tropics are defined as the region equatorward
of 30° latitude.

Fig. 1. The 99.9th percentile of daily precipitation (millimeters per day) for
the periods 1981–2000 (blue) and 2081–2100 (red) in the SRES A1B scenario
(multimodel median), and based on Global Precipitation Climatology Project
(GPCP) data for the period 1997–2006 (black). Model scatter (shading) for the
period 1981–2000 is shown using the interquartile range (50% of models lie
within the shaded region). The spatial resolution of the GPCP data were
degraded from 1° to 3°, which is comparable with climate model resolutions.
A Gaussian smoothing filter of standard deviation 6° latitude was applied to
reduce noise in all plots showing variations with latitude.

14774 ! www.pnas.org"cgi"doi"10.1073"pnas.0907610106 O’Gorman and Schneider

Changes	in	precipitation	extremes	and	scaling	(5)	in	CMIP3	models	under	the	A1B	scenario	
(from	O’Gorman	&	Schneider,	2009)



Thermodynamic	and	dynamic	
contributions	to	precipitation	extremes

A	thermodynamic	scaling	can	be	constructed	by	
neglecting	changes	in	vertical	velocity

𝛿𝑃 ≈ =𝜔
𝑑𝛿𝑞&
𝑑𝑝

6
78∗
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�

𝑑𝑝
𝑔
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𝑑𝑞&
𝑑𝑝
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𝑑𝑝
𝑔

thermodynamic dynamic



Thermodynamic	contribution	dominates	
in	the	extratropics

Climatology Project (GPCP) (19) (Fig. 1). However, there are
considerable uncertainties in observations of precipitation, and
other studies using different datasets or different measures of
precipitation extremes have found that climate models under-
estimate precipitation extremes relative to observations (10–12,
†). The simulated precipitation extremes increase at all latitudes
as the climate warms, particularly in the tropics where they are
largest (Fig. 1). The water vapor content of the atmosphere also
increases at all latitudes, but precipitation extremes do not scale
with the water vapor content (Fig. 2). In the multimodel median,
precipitation extremes increase with global-mean surface air
temperature at a smaller rate than the zonal-mean atmospheric
water vapor content (Fig. 2). For example, at 60°N, the 99.9th
percentile of daily precipitation increases at 6% K!1 in the
multimodel median, compared with 10% K!1 for the atmo-
spheric water vapor content. (Both rates of increase are nor-
malized by the change in global-mean surface air temperature
for each model before taking the median among all models.)
There is larger intermodel scatter in the tropics than in the
extratropics in both the precipitation extremes and their frac-
tional changes with warming (Figs. 1 and 2).

Precipitation extremes also do not scale with water vapor
content in individual models. Extratropical precipitation ex-
tremes consistently increase less rapidly with surface air tem-
perature than does the extratropical water vapor content (Fig.
3A). The rate of change in tropical precipitation extremes varies
widely among models; changes in tropical precipitation extremes
normalized by the increase in tropical surface air temperature
range from 1.3% K!1 to 30% K!1. (Models with small tropical
increases can be more easily distinguished in Fig. S1, which is the
same as Fig. 3 but with logarithmic axis scales.) In most models,
tropical precipitation extremes increase less rapidly than or at a
similar rate as tropical water vapor content; for two outlying
models (both from GFDL), the increases in tropical precipita-
tion extremes are much greater. The behavior of tropical pre-
cipitation extremes in the GFDL models is also sensitive to the
percentile considered, with close to zero ("1% K!1) changes in
tropical precipitation extremes at the 99th percentile.

Precipitation extremes may occur preferentially in certain
seasons or at certain longitudes. Furthermore, one may hypoth-
esize that precipitation extremes depend on the saturation water
vapor content of the atmosphere when they occur, rather than on

†Models and observations may agree more closely in our study than in some other studies
in part because we use percentiles of precipitation including all days (dry and wet) and
because we spatially average observations to typical model resolution. The precipitation
extremes scaling discussed below implies that if models approximately reproduce the
distribution of vertical velocities but inaccurately simulate the frequency of wet days,
inclusion of all days in the percentile analysis will give the most favorable comparison.

Fig. 2. Fractional changes in the 99.9th percentile of daily precipitation
(blue), zonally averaged atmospheric water vapor content (green), saturation
water vapor content of the troposphere (black dotted), full precipitation
extremes scaling (Eq. 2) (red dashed), and thermodynamic scaling for precip-
itation extremes (black dashed). The lines show multimodel medians of the
fractional changes relative to 20th-century values, normalized by the global-
mean change in surface air temperature for each model. Model scatter is
shown for the fractional change in precipitation extremes using the inter-
quartile range (shading). The saturation water vapor content is calculated
using an average of the climatological monthly-mean temperature over all
times and longitudes at which the extreme precipitation occurs.

A

B

Fig. 3. Fractional changes in the 99.9th percentile of daily precipitation for
each model versus changes in atmospheric water vapor content and scalings
for precipitation extremes. (A) Atmospheric water vapor content (open sym-
bols) and the thermodynamic scaling that neglects changes in upward velocity
(solid symbols). (B) Full scaling for precipitation extremes. The fractional
change are relative to 20th-century values, averaged over the extratropics
(Left) or tropics (Right) and normalized by the change in surface air temper-
ature averaged over the extratropics or tropics. Solid lines correspond to
one-to-one relationships. The extratropics are defined as the regions pole-
ward of 30° latitude, and the tropics are defined as the region equatorward
of 30° latitude.

Fig. 1. The 99.9th percentile of daily precipitation (millimeters per day) for
the periods 1981–2000 (blue) and 2081–2100 (red) in the SRES A1B scenario
(multimodel median), and based on Global Precipitation Climatology Project
(GPCP) data for the period 1997–2006 (black). Model scatter (shading) for the
period 1981–2000 is shown using the interquartile range (50% of models lie
within the shaded region). The spatial resolution of the GPCP data were
degraded from 1° to 3°, which is comparable with climate model resolutions.
A Gaussian smoothing filter of standard deviation 6° latitude was applied to
reduce noise in all plots showing variations with latitude.

14774 ! www.pnas.org"cgi"doi"10.1073"pnas.0907610106 O’Gorman and Schneider

Thermodynamic	scaling	calculated	by	neglecting	𝜔 in	scaling	(4).	

Still	requires	knowledge	of	temperature	during	precipitation	extremes	
(may	be	different	to	mean	temperature).

(from	O’Gorman	&	Schneider,	2009)



Summary	so	far

• Constructed	scaling	for	daily	precipitation	extremes

• Indicates	precipitation	extremes	increase	at	4-8%/K	if	no	dynamic	or	
microphysical	contributions

• GCM	projections	indicate	microphysical	contributions	are	small	for	daily	
extremes	at	the	grid	box	scale,	but	dynamical	effects	may	be	large,	
particularly	in	tropical	regions

• GCMs	disagree	strongly	on	dynamical	contribution	over	the	tropics	as	a	
whole



Spatial	pattern	of	Precipitation	
extreme	changes

Multi-model	mean	over	22	CMIP5	models.	Scaling	calculated	using	(5)	
(from	Pfahl et	al.	2015).



Spatial	pattern	determined	by	dynamic	
component

𝛿𝑃 ≈ =𝜔
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Multi-model	mean	over	22	CMIP5	models.	Scaling	calculated	using	(5)	
(from	Pfahl et	al.	2015).



Robust	decreases	in	precipitation	regions	
over	subtropical	oceans

• Some	agreement	across	models	of	negative	
dynamical	contribution	in	subtropical	regions

• Currently	not	well	understood

• Starting	point	to	examine	quasi-geostrophic	omega	
equation	(e.g.,	Tandon et	al.,	2018)

𝑁K

𝑓K
𝛻NK𝜔 + 𝜕PP𝜔 = ℱ(𝜁, 𝑇, 𝑄)



Convective-scale	precipitation	
extremes

• Observations	of	precipitation	extremes	are	typically	
based	on	gauges

• These	are	effectively	point	measurements	and	at	a	
different	spatial	scale	to	GCM	results

• In	particular,	gauges	affected	by	small-scale	
convective	precipitation	extremes



Super	Clausius-Clapeyron scaling	in	
observed	extremes

3036 G. Lenderink et al.: Hourly precipitation extremes
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Fig. 1. Dependency of different percentiles of hourly precipitation extremes on daily mean temperature
(left: HKO; right: NL). Stippled lines are estimates from the GPD fitting procedure, whereas solid lines
are the percentiles computed from the raw data (in most cases these overlap). The grey shading denotes
the 98% uncertainty range derived from the GPD fit. Red (black) stippled lines denote dependencies of
14% (7 %) per degree. For comparison, these lines are identical in all plots; the distance between two
lines is a factor 2 in intensity.
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Fig. 1. Dependency of different percentiles of hourly precipitation extremes on daily mean temperature (left: HKO; right: NL). Stippled
lines are estimates from the GPD fitting procedure, whereas solid lines are the percentiles computed from the raw data (in most cases these
overlap). The grey shading denotes the 98% uncertainty range derived from the GPD fit. Red (black) stippled lines denote dependencies of
14% (7%) per degree. For comparison, these lines are identical in all plots; the distance between two lines is a factor 2 in intensity.

are first computed from the GPD fit. Anomalies compared
to the average of all 15-yr periods are then computed, and
then averaged over several months, e.g. June, July and Au-
gust (JJA) or the months May until October (MJJASO). This
measure is denoted as 1Prh. Error bands are based on the
98% confidence interval of the GPD fit procedure, assuming
errors of the separate months to be independent. The choice
of 15 yr is a compromise between being able to determine the
different extremes (which are very noisy with less than 10 yr
of data) and being able to capture inter-decadal variations
(which are more damped with longer aggregation periods).
Here, we use the daily mean dew point temperature because
hourly observations are not available for the De Bilt time se-
ries before 1950. We note that for the period 1950–2006 sim-
ilar results are obtained using hourly dew point temperatures.

3 Scaling of hourly precipitation extremes

Figure 1 shows scaling relations of hourly precipitation ex-
tremes derived using the daily mean temperature for data
from the Hong Kong Observatory (HKO) and the 27 stations
in the Netherlands (NL). For NL, this is the reproduction of
Fig. 1d in Lenderink and van Meijgaard (2010), yet with one
year more data for each station. There is clear hint of a de-
crease in precipitation intensity for temperatures above 24 �C
in NL, but the number of observations with rain above that
temperature is very small and consequently the error bands
are large. For instance, above 24 �C there is no observation
corresponding to the 99.9th percentile, and this percentile
is computed from the extrapolation by means of the GPD

fit (indicated by the dashed purple line in Fig. 1). There is
a very clear fall off in intensity above 24 �C in HKO. Since
there are many days (about 50% of days in 1971–2000) with
daily mean temperatures above that temperature in HKO, this
fall off in intensity is obviously well sampled. Below 24 �C,
both data sources show a super C-C scaling. At the same
temperature, and for the same percentile, intensities in HKO
are generally larger than those in NL by 20–30%.
Results using the dew point temperature are shown in

Fig. 2, where we used the hourly dew point temperature at the
time of each hourly rainfall observation (h-0), and from two
(h-2) and four hours (h-4) before each rainfall observation.
Taking the dew point temperature from four hours before
each rainfall observation (h-4) the most consistent scaling is
obtained. With consistent we mean here the most constant
dependency across the largest range in dew point tempera-
tures. Taking the dew point temperature at the time of the
precipitation event (h-0) less consistent results are obtained,
in particular for the high temperature range. This is because
the shower affects the dew point temperature by evaporation
of precipitation (causing an increase in dew point) and the
transport of dry air by the convective downdrafts associated
with the shower (causing a decrease in dew point). In par-
ticular for the most intense showers often a decrease in dew
point temperature is observed during the shower. The dew
point temperature from four hours earlier is therefore a bet-
ter measure of the near surface humidity from the air mass
in which the shower develops. To keep the text concise we
will omit “taken four hours before each hourly precipitation
observation” in the following, and just use “hourly dew point
temperature”.
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Can	these	results	be	used	to	reason	about	global	
warming?

(from	Lenderink et	al.,	2011).



Temperature	dependence	of	
convective	precipitation	extremes

Simulating	convective	precipitation	extremes	requires	
cloud-resolving	models

• Convective	updraft	velocity	may	increase	with	warming
• Singh	&	O’Gorman	(2015)
• Loriaux et	al.	(2013)

• Efficiency	may	depend	on	warming
• Singh	&	O’Gorman	(2014)



Cloud-resolved	modelling	evidence	
mixed

• Some	studies	find	super-CC	scaling	in	convective	
precipitation	extremes	(Kendon et	al.,	2014)	while	
others	do	not	(Ban	et	al.,	2015)	

• May	depend	on	region	or	model

• Clear	that	observed	scaling	rates	may	not	be	good	
indication	of	future	changes	(Bao et	al.,	2017)



Conclusions
• Precipitation	extremes	increase	with	warming	in	climate	
simulations	and	in	observed	trends

• Rate	of	increase	varies	across	models	and	across	regions	
because	of	uncertain	dynamical	contribution

• Better	constraints	on	changes	to	precipitation	extremes	
require	understanding	of	the	factors	that	determine	the	
large-scale	vertical	velocity	field

• Convective-scale	precipitation	extremes	pose	additional	
challenges
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Extra	slides



Mean	precipitation

In	steady	state,	the	global-mean	atmospheric	energy	budget	
may	be	written,

𝐹&UVW − 𝐹XYZ = 𝐿𝐻𝐹 + 𝑆𝐻𝐹

This	states	that	the	turbulent	fluxes	balance	the	radiative	
cooling	rate	𝑄.

On	a	global	scale,	latent	heat	fluxes	dominate	and	we	have

𝑃 ≈ 𝑄

Turbulent	fluxesRadiative	fluxes



Mean	precipitation

The	radiative	cooling	rate	increases	under	greenhouse	
gas	forcing	at	a	rate	of	roughly	2-3%	per	Kelvin

global-mean temperature change over the next half-century or so.
For example, in all but one of the 19 coupled atmosphere–ocean 
general circulation models (AOGCMs) in CMIP-2 (the second 
Coupled Model Intercomparison Project24,25), an annual 1% com-
pound increase in CO2 concentrations (a linear increase in radiative
forcing) results in a near-linear global-mean temperature response
up to and beyond the time of CO2 doubling after a few years’ initial
adjustment (ref. 26; and see Fig. 9.3a of ref. 4). Likewise, global-mean
precipitation increases roughly linearly in these experiments 
(Fig. 9.3b of ref. 4), albeit with rather stronger unforced and effective-
ly random variations from year to year.

The net radiative forcing in the CMIP-2 experiments is at the high
end of projected anthropogenic changes over the coming decades.
Hence current AOGCMs suggest that a strongly nonlinear global-
mean temperature response to greenhouse forcing is unlikely over
the next few decades at least. In that case, the constraint of global
energy conservation means that estimates of past radiative forcing,
recent observed near-surface temperature change and the accumula-
tion of heat in the global oceans27,28 place objective, albeit still 
rather weak, constraints on the overall strength of atmospheric 
feedbacks16,17,19,20. These in turn provide the basis for an objective
probabilistic forecast of the temperature response to a given 
emissions scenario18,29,30 of the type we would like, ultimately, to 
provide for the hydrologic cycle.

The curve in Fig. 1 shows an estimate of the probability distribu-
tion of global-mean warming at the time of CO2 doubling under a
scenario of CO2 concentration increasing by 1% annually (the 
‘transient climate response’, or TCR), which is consistent with recent
observations of large-scale surface, atmospheric and oceanic 
temperature change19,31. Note that this empirical distribution is, if
anything, likely to underestimate the range of uncertainty in TCR, as
the analysis on which it was based assumed a negligible impact of 
natural forcing on temperature changes in the twentieth century17.

The crosses in Fig. 1 show the TCR of the 19 AOGCMs in the
CMIP-2 multi-model comparison. If the CMIP-2 models were a 

random sample of possible climate-system behaviour consistent
with these observations, then we should expect to find approximately
equal numbers of models in each decile (vertical band) of the empiri-
cal TCR distribution and a more-or-less flat histogram in the inset
panel. Instead, the models are concentrated near the centre of the 
distribution. Only one model displays a TCR in the uppermost two
deciles of the distribution, and this turns out to be fortuitous. 
Warming accelerates in this particular model32 owing to some form of
nonlinearity in the response. The empirical distribution (which
assumes that both climate sensitivity and the nature of the ocean
response are constant over these timescales) would immediately
become much broader if it were to allow for such nonlinearity, pushing
even this high-response model down into a relatively low percentile.

If current models underestimate the range of global-mean 
temperature responses consistent with recent observations, the prob-
lem can be expected to be worse for variables such as precipitation,
which are not so well constrained by the available data. Hence any
assessment of the risk of precipitation change exceeding a given
threshold by a given date based solely on the spread of responses of
currently available climate models10 will be underestimated, perhaps
by a substantial margin.

Of course, the fact that current climate models do not span the
range of responses consistent with recent warming is no indictment
of the models: they were not designed to do so. The IPCC TAR was
careful not to interpret the spread of the models as a direct measure of
uncertainty in climate forecasts, for precisely this reason. Far from
being designed to provide random samples of possible representa-
tions of the climate system, AOGCMs are generally designed as ‘best
guess’ representations of the system based on a limited set of observa-
tions. Hence some clustering of model results towards the centre of
the range of physically plausible behaviour should be expected.
Because we cannot quantify the extent of this clustering bias a priori,
we cannot predict the likelihood of the response in the real world
lying above or below the range of model simulations with modelling
alone. The only objective probabilistic forecast is provided by the
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Figure 1The range of transient climate response (TCR) consistent with recent
observed temperature trends, compared to TCRs of some current AOGCMs. The curve
shows the warming at the time of CO2 doubling after an increase in CO2 concentration
of 1% per year (TCR), estimated from comparing an intermediate-complexity model
with observations of recent large-scale temperature change, allowing for uncertainty
due to internal variability as simulated by an AOGCM (refs 19, 31, with supplementary
data supplied by M. D. Webster). The curve has been smoothed for clarity and the
vertical bands show equal-area deciles of the distribution. The crosses are the TCRs of
the AOGCMs in the CMIP-2 ensemble4,25. Superimposed red diamonds show models
used in the TAR summary range of ‘1.4–5.8 !C warming from 1990 to 2100’. The
inset histogram shows how many of the CMIP-2 models fall into each decile of the
observationally constrained distribution.
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Figure 2Global-mean temperature and precipitation changes in AOGCM simulations
(scatter plots), and probability distributions obtained by requiring consistency with
recent observations (curves). Red triangles show global-mean temperature and
precipitation changes in a wide range of equilibrium CO2-doubling experiments with
simple thermodynamic (‘slab’) oceans4,45, with the red line showing the best-fit (least
squares) linear relationship. Green diamonds show the same, at the time of CO2

doubling, for those CMIP-2 models for which the data are available25. Blue crosses are
the green diamonds adjusted for disequilibrium in the CMIP-2 runs by adding "Fs/kT

to #T(equation (2)), with a single value of " (!1) estimated from the data to remove
the bias with the best-fit line through the ‘slab’ experiments. All these points would lie
on the dashed line labelled C–C if precipitation were to follow the Clausius–Clapeyron
relation44. The green dashed curve is the observationally constrained estimate of the
distribution of global-mean temperature change at the time of CO2 doubling from 
Fig. 1. The blue curve is the same, but adjusted for disequilibrium like the blue
crosses. The red curve shows the distribution of global-mean precipitation changes
implied by the blue curve, assuming the same straight-line relationship observed in
the ‘slab’ experiments, with the same amount of scatter (assumed Gaussian).
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Increase	in	global-mean	precipitation	plotted	against	increase	in	global-mean	temperature	for	
doubling	of	CO2 (From	Allen	&	Ingram,	2003)



But	this	does	not	constrain	
precipitation	extremes!

Environ. Res. Lett. 5 (2010) 025205 R P Allan et al

Since we cannot quantify to what extent this effect remains
when ERA Interim is used, an alternative approach is used.

2.2. Wet and dry regimes

To avoid the use of reanalysis fields, instead percentile
bins of precipitation were used to define wet and dry
regions. Monthly precipitation values were sorted by intensity,
including dry grid-points. Mean precipitation was calculated
for the driest 50% of grid boxes and subsequently for
each 10% bin ranging from 50 to 60% up to the wettest
10% of grid boxes. Monthly area-weighted means were
computed over each bin for the GPCP v2.1 data (1979–
2008) and also for ‘run1’ of all AMIP3 models which
spanned the entire period 1979–2001: CNRM-CM3, GISS-
E-R, INMCM3, IPSL-CM4, MIROC3.2-hires, MIROC3.2-
medres, MRI-CGCM2-3.2a, NCAR-CCSM3, HadGEM1 (for
details, see www-pcmdi.llnl.gov) and a model ensemble mean.
Mean seasonal cycles were subtracted from the resulting time
series to reduce the influence of the large changes in solar
forcing and associated circulation shifts that are unlikely to
be a good surrogate for climate change. Circulation changes
are also associated with El Niño although sampling wet or dry
regimes will reduce the impact of these changes somewhat.
Precipitation trends were calculated using linear least-squares
fits. Essentially we seek to quantify the statistical distribution
of tropical precipitation and its linear change with time.

Figure 2 shows trends and associated correlation (r ) for
each percentile bin for the GPCP data, considering the entire
period and the 1988–2008 period, when SSM/I ocean data
were included. Also shown are trends for the model ensemble
mean and range for the nine individual models (grey shading);
the ensemble mean correlation coefficient does not lie entirely
within the inter-model spread since forming an ensemble can
increase correlation as the random unforced component of
variability is reduced. Trend magnitudes for GPCP are reduced
when excluding the pre-SSM/I period (1979–1987) from the
analysis, in closer agreement with the model results. Caution
in using pre-1988 GPCP data has been expressed previously
(e.g. Adler et al 2008) due to issues with inter-calibration of
the infra-red satellite radiances and homogeneity associated
with changes from infra-red-only to combined infra-red and
microwave ocean precipitation retrievals.

Figure 2 shows a clear partition between positive trends
above the 60–70th percentile and negative trends below these
percentiles for the GPCP and model data. Pall et al (2007)
found this partition to be sensitive to the latitude chosen, being
closer to the 90th percentile for the global mean, although they
considered daily model data at approximately 2.7 times CO2

levels relative to a control. Guided by figure 2, wet and dry
regions of the tropics were defined each month as the driest
70% and wettest 30% of grid boxes for each model and satellite
data set. Time series were calculated for these regimes over the
entire tropics and for land and ocean regions separately.

Figure 3 displays deseasonalized tropical ocean anomalies
of SST (HadISST; Rayner et al 2003) and precipitation and the
wet and dry region precipitation time series for models, GPCP
and SSM/I. Linear trends and correlation between precipitation

Figure 2. (a) Linear trends in precipitation with time (dP/dt in
%/decade) and (b) associated correlation coefficient, r , with
percentile bins of tropical monthly precipitation for GPCP data,
AMIP3 model ensemble mean and the range for individual models
(grey shading).

and SST are presented in table 1; a two-tailed t-test, allowing
for autocorrelation (Yang and Tung 1998), was employed
to detect significant correlation at the 95% confidence level.
Positive precipitation anomalies coincide with warm El Niño
years in the models and observations, attributable to the wet
tropical region response (figure 3(c)). This relationship is
statistically significant with mean precipitation anomalies for
GPCP and the model ensemble mean increasing at around
6–10% K−1 depending upon the time period, close to the
Clausius–Clapeyron rate, with a spread across the models of
2.9–11% K−1 (table 1). The SSM/I data show a response
around twice as large as for GPCP.

Over the tropical oceans, positive precipitation trends are
apparent for the wet region (figure 3(c)) and negative trends in
the dry regions (figure 3(d)), consistent with Allan and Soden
(2007), despite a differing methodology. Observed wet region
trends range from 1.8 to 3.0%/decade, overlapping with the
upper range of the inter-model spread. The model ensemble
trend is also positive, but smaller (1%/decade).

Negative trends in the dry regions for GPCP data are
more than halved when excluding the pre-SSM/I period.
GPCP anomalies are substantially more positive than model
anomalies during 1981–82 and 1984–86, and further analysis
is required to assess the accuracy of GPCP data during these
periods (Adler et al 2008). Nevertheless, GPCP ocean trends
for the 1988–2008 period are twice the model ensemble mean
trends for the 1979–2001 period despite similar observed
SST trends for the two periods (0.06 and 0.08 K/decade
respectively). SSM/I data do not show a statistically significant
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2.2. Wet and dry regimes

To avoid the use of reanalysis fields, instead percentile
bins of precipitation were used to define wet and dry
regions. Monthly precipitation values were sorted by intensity,
including dry grid-points. Mean precipitation was calculated
for the driest 50% of grid boxes and subsequently for
each 10% bin ranging from 50 to 60% up to the wettest
10% of grid boxes. Monthly area-weighted means were
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Mean seasonal cycles were subtracted from the resulting time
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forcing and associated circulation shifts that are unlikely to
be a good surrogate for climate change. Circulation changes
are also associated with El Niño although sampling wet or dry
regimes will reduce the impact of these changes somewhat.
Precipitation trends were calculated using linear least-squares
fits. Essentially we seek to quantify the statistical distribution
of tropical precipitation and its linear change with time.

Figure 2 shows trends and associated correlation (r ) for
each percentile bin for the GPCP data, considering the entire
period and the 1988–2008 period, when SSM/I ocean data
were included. Also shown are trends for the model ensemble
mean and range for the nine individual models (grey shading);
the ensemble mean correlation coefficient does not lie entirely
within the inter-model spread since forming an ensemble can
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and SST are presented in table 1; a two-tailed t-test, allowing
for autocorrelation (Yang and Tung 1998), was employed
to detect significant correlation at the 95% confidence level.
Positive precipitation anomalies coincide with warm El Niño
years in the models and observations, attributable to the wet
tropical region response (figure 3(c)). This relationship is
statistically significant with mean precipitation anomalies for
GPCP and the model ensemble mean increasing at around
6–10% K−1 depending upon the time period, close to the
Clausius–Clapeyron rate, with a spread across the models of
2.9–11% K−1 (table 1). The SSM/I data show a response
around twice as large as for GPCP.

Over the tropical oceans, positive precipitation trends are
apparent for the wet region (figure 3(c)) and negative trends in
the dry regions (figure 3(d)), consistent with Allan and Soden
(2007), despite a differing methodology. Observed wet region
trends range from 1.8 to 3.0%/decade, overlapping with the
upper range of the inter-model spread. The model ensemble
trend is also positive, but smaller (1%/decade).

Negative trends in the dry regions for GPCP data are
more than halved when excluding the pre-SSM/I period.
GPCP anomalies are substantially more positive than model
anomalies during 1981–82 and 1984–86, and further analysis
is required to assess the accuracy of GPCP data during these
periods (Adler et al 2008). Nevertheless, GPCP ocean trends
for the 1988–2008 period are twice the model ensemble mean
trends for the 1979–2001 period despite similar observed
SST trends for the two periods (0.06 and 0.08 K/decade
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Time	rate	of	change	in	tropical	(30S-30N)	precipitation	rate	as	a	function	of	
percentile	for	observations	(GPCP)	and	AMIP3	models	(from	Allan	et	al.	2010)


