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Outline

• Types of atmospheric models
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• Numerical representation

• Sources of error

• Boundary conditions



NCAR climate model (~0.35 degree resolution) Global model

https://www.youtube.com/watch?v=n0mupl4FZsQ

https://www.youtube.com/watch?v=n0mupl4FZsQ


Operational Numerical Weather Prediction Model

https://www.youtube.com/watch?time_continue=25&v=bBLsn_WCg8g
ACCESS-R (12 km)

https://www.youtube.com/watch?time_continue=25&v=bBLsn_WCg8g


Regional Model

Visualisation courtesy:
Drew Whitehouse NCI

From Vincent & Lane 
(J Clim 2017)

dx=4 km WRF simulations



Regional Model ( 0.4 km – cloud-resolving)
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Atmospheric models
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Complexity varies by application and scale



Dynamical core – forced equations of motion

Complete equations of motion:

q is potential temperature
r is density
f  is coriolis

Exact form depends on assumptions / 
approximation and coordinate system

F* is an external forcing from physics or 
parameterisations.  



How are equations solved?

• Finite difference methods

• A combination of spectral / grid methods
– Advantage – exact representation of horizontal derivatives 

on sphere
– Physics step completed on grid

• Approximations to the equation set 
– (e.g., hydrostatic, anelastic, reduced compressibility, etc.)

• Specific vertical coordinate (e.g., height, pressure, 
terrain-following, etc.)



Spectral methods (from ECMWF) 
https://confluence.ecmwf.int/display/FCST/Spectral+representation+of+the+IFS

https://confluence.ecmwf.int/display/FCST/Spectral+representation+of+the+IFS


https://climatedataguide.ucar.edu/climate-model-evaluation/common-spectral-model-grid-resolutions

https://climatedataguide.ucar.edu/climate-model-evaluation/common-spectral-model-grid-resolutions


Example global model (lat / lon-based) grid.

Challenges at poles as grids become poorly defined / too closely spaced (EC reduces 
the number of grid points near pole)



Unstructured hexagonal global mesh

Variable resolution – alternate to ‘nesting’
Requires scale aware physics schemes
Avoids challenges at poles

MPAS model



How many calculations does an atmospheric 
model alone* have to perform?

•2.5 x 2.5o = about 10,000 cells

•30 vertical layers = about 300,000 grid boxes

•At least 7 unknowns = about 2.1 million 
variables

•Assume 20 calculations (low estimate) for each 
variable = about 42 million calculations per time-
step

•Time step of 30 minutes = about 2 billion 
calculations per day

•100 year simulation = 73 trillion calculations

• Reducing grid spacing by half (in each 
dimension) can increase computational cost by a 
factor of 16.

Computational limits

*no chemistry, prognostic aerosol, or upper atmosphere



Nested model simulations (dynamical downscaling / regional NWP):

Wapler et al. (2010, Monthly Weather Review)

DX = 34, 11.33, 3.78, 1.23 km 

• Global model or analysis provides 
initial and boundary conditions to 
outer domain
• Outer domain can be ‘nudged’ to 

global model/analysis

• Subsequent domains take their initial 
and boundary conditions from the next 
coarsest domains (one-way nesting)

• Depending on how model is coded 
there can be restrictive rules about the 
ratio of one grid resolution to the next
• Most models aren’t capable of 

vertical resolution changes from 
domain to domain

• Two-way nesting – high-resolution 
domains feed back on coarse-
resolution domains. (Makes resolution 
sensitivity studies challenging)



Why increase resolution or use nesting (dynamical downscaling)?

Neelin 2011

North America @ 5degrees lat/lon

North America @ 0.5degrees lat/lon



http://climatefutures.org.au/article/what-is-downscaling/

Refined simulation/prediction/projection – with more local detail



Nested simulation using ACCESS / UM
Courtesy of Martin Jucker

Refined physics as resolution 
increases

Global models / 
parameterized 
convection

Convection
-permitting 
models

Cloud-resolving /
Large-eddy 
models

dx O(10 km)

dx O(1 km)

dx O(100 m)



NWP model forecast improvement (model / data / assimilation)

P Bauer et al. Nature 525, 47-55 (2015) doi:10.1038/nature14956



Sources of error

• Initial condition errors (for initial value problems [e.g., NWP / 
case studies], c.f. equilibrium experiments)

• Model physics (imperfect representation of the real world)

• Numerical errors (errors associated with numerical 
approximations and finite resolution –discussed later)

• Boundary condition errors (numerical as well as regional 
models constrained by imperfect large-scale conditions) 



Example: Errors in physics

(Wapler et al. 2010 simulations over Darwin with different boundary layer schemes)

Relative Humidity

Mixing Ratio (H20)



Boundary Conditions..

Periodic boundaries (global model, idealized models)

Assume that the domain is periodic or cyclic. 

Periodic - repeats itself. - Equivalent to:

Periodic boundary conditions are exact (achieved through array indexing) 

shallow water equations



Assume that the ends of domains are walls 

Equivalent to u=0 at x=0, x=L, etc.:

Fixed boundary conditions are exact (achieved through imposed velocities), 
but are perfectly reflective, which is not desirable for most atmospheric 
applications 

Boundary Conditions..

Fixed boundaries (regional models, vertical boundaries, idealized models)

shallow water equations



Assume that the ends of domains allow information in and out (both through 
advection and wave propagation)

Achieved through:
* solutions to wave equations for constant velocity / linear solutions
* sponge / absorbing layers; relaxation methods; extrapolation

Open boundary conditions are not exact in general and normally have 
spurious influences on the flow within some range of the boundaries and are 
partially reflective

Open boundaries (regional models, upper vertical boundary, idealized models)

shallow water equations

Boundary Conditions..



Vertical Boundary Conditions..

• Lower boundary condition is an exact condition (fixed / reflective), where velocity 
normal to the surface is zero (e.g., w=0 on flat surface)

• Upper boundary condition should be open (to permit upward propagating waves to 
leave domain)

• Vertical grid is normally stretched as well – where grid spacing increases towards top 
of domain. 

• Example: vertically-propagating mountain waves.. 

Reproduces analytic linear solution

open boundary fixed boundary

Large differences from analytic solution



Vertical Boundary Conditions – sponge layer

Sponge layer true model top = 20 km
• A layer that damps the perturbations in the 

flow before they reach the upper boundary.
• Can be used for vertical or lateral boundaries 
• Removes boundary effects, and makes bottom 

or sides of sponge behave like an “open” 
boundary.

• Implemented as:

a is damping - non-zero inside sponge layer 
and zero outside.

• Also called Rayleigh friction / Rayleigh damping
• Model solution inside the sponge layer is not a 

solution to the governing equations – should 
never be used! 

• For this example half of entire domain is taken 
up by sponge.
– Same amount of computer time is spent on sponge 

compared to usable solution, so very inefficient
• Can be used in combination with other 

open/radiation conditions to be more effective 
and efficient

Most ‘default’ model upper 
boundaries in common 
community models  and NWP 
models are partially reflective as 
the sponges are too shallow / too 
weak. This can pose problems for 
studies of upper-tropospheric, 
stratospheric, and wave dynamics



Lateral Boundary Conditions – regional model spin-up issues

• Regional (nested) 
models normally 
`feature’ smoother 
features near their 
inflow boundary

• A property of larger-
scale resolved flow 
coming from the coarser 
grid

• Distance of influence is 
related to advective 
timescale and timescale 
of growth of small-scale 
processes / instabilities

• Can alleviate this by 
seeding perturbations at 
boundary, but there is 
no unique way to do this 

Engel et al. (2013)

e.g., 50 km at 20 m/s takes about 40 mins, which is 
similar time for 5m/s thermal to span the 5 km 
deep mixed layer twice (eddy overturn time)
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Outline

• Parameterisation

• Effective resolution

• Implicit numerical diffusion and dispersion



Parameterisation
(parameterization [US], parametrization [UK])

Representation of unresolved processes using:
- Resolved scale flow.
- Some approximation, theoretical or empirical relationship linking the resolved flow to 
unresolved processes.

“If this is the large scale flow, what is the small scale flow?”

or

“For a specific resolved flow, what is the unresolved flow, and how does this then 
feedback on the resolved flow?”

- No unique ways to tackle this
- Approaches normally deterministic (but for many processes should be stochastic)
- Can be diagnostic or prognostic



Parameterisation
(parameterization [US], parametrization [UK])

What needs to be parameterised?



Parameterisation
(parameterization [US], parametrization [UK])

deep convection

shallow convection

boundary layers

surface drag

turbulence & mixing

radiation

aerosols

microphysics /
clouds

gravity wave drag

chemistry



With finite grid spacing -
Part of physical solution will be unresolved.

e.g., 10 km grid spacing:
≥ 100 km signals will be well resolved (see next lecture)
< 20 km signals will be unresolved
20 -100 km signals will be partially resolved

.

Why do we parameterise?





Therefore, the resolved scale motion is forced by the unresolved motion. These 
terms on the RHS are called the subgrid-scale Reynolds stress terms.

To be physically consistent, our model must incorporate some forcing from 
subgrid-scale processes – hence we need to parameterise them.



Parameterisation
This Reynolds average approach is the basis of parameterizations of all dynamical 
processes (e.g., turbulence and mixing, boundary layers, surface drag, gravity wave drag, 
deep convection, shallow convection).

Other parameterizations of physical/chemical processes (e.g., microphysics, radiation, 
chemistry, aerosols) are slightly different as they are representing the grid-scale 
forcing/tendency from much smaller-scale reactions determined by the large-scale flow.

For example:
radiation: DT/Dt = Flw + Fsw where the forcing is calculated by solving a set of 
integrodifferential equations with parameters determined by the resolved flow

microphysics: growth / decay of microphysical classes is determined by the grid-scale 
temperature and pressure, this leads to a tendency on the grid-scale water vapor mixing 
ratio and temperature



Dynamical parameterisation example: Sub-grid scale mixing/turbulence

One approach: turbulence theory (K-theory) tells us that:

So our Reynolds averaged equation reduces to:

Provides a simple way to relate sub-grid terms to 
resolved part of the flow.

If K is a constant, this is the advection-diffusion equation.

K is called the sub-grid scale diffusion coefficient.



The system is still not closed as K needs to be defined. Defining K is the ‘closure’

For turbulence, K is defined by amplitude of expected turbulent motion.

K << 1 when flow is stable and laminar
K >> 1 when flow is turbulent.

Only way to determine K is using resolved scale features of the flow.

Many ways to do this.

e.g., Smagorinsky closure:
Ri is the Richardson number
Flow is turbulent if Ri<0.25

Dynamical parameterisation example: Sub-grid scale mixing/turbulence

Smagorinsky closure



Types of ‘closures’

- Zero-order closure:
- assume <u’w’> =0, etc.

-1st-order closure:
- parameterise fluxes as ‘diffusion processes’, as in previous example
- diffusion coefficients determined from diagnostic relations

- 2nd-order closure:
- derive prognostic equation such that:

- the triple product terms would then need parameterising (in terms of double 
products). E.g.

- this makes the scheme a prognostic scheme (as opposed to diagnostic) 

Dynamical parameterisation example: Sub-grid scale mixing/turbulence



Convective parameterisation

Parameterisation of the convective mass flux (Mc = ⍴σwc, where σ is the fractional area 
of clouds)  for a population of clouds normally represented by idealized plumes



Parameterisation assumptions

For all parameterisations there is a fundamental assumption of a separation of scale 
between the resolved flow and the process being parameterised. 

• Parameterisation formulated on atmospheric columns (no ‘knowledge’ of state of 
adjacent grid boxes)

• E.g., convection: area of convective plumes much smaller than area of grid box
• For dynamical parameterisations equivalent to saying that many individual elements 

form part of Reynolds average

Maxime Colin



The grey zone

As resolutions increase the 
parameterization assumptions are 
violated.

Scales where the parameterized 
processes become partially 
resolved

Large convective clouds - ~1-10 km

Boundary layer eddies and 
turbulence ~<1 km

Normally parameterisations are 
still used in ‘grey zone’ even 
though the fundamental 
assumptions behind those 
parameterisations are violated

Wingaard (2004, JAS)

~10 km ~1 km



Effective model resolution
Models do not properly resolve the 
dynamics/physics they are trying to 
represent on the grid scale.

Numerical errors are maximized at the 
grid scale

Implicit and explicit numerical diffusion 
reduces the energy at the smallest 
represented scale

The effective resolution of a model 
ends up being about 7-10 times the 
grid scale.
• Resolution does not equal grid 

spacing!

To properly resolve a phenomenon the 
grid spacing needs to (at least) be 10 
times smaller than the scale of the 
phenomenon Skamarock (2004)



Example: cloud-resolving modelling
Squall line is ~ 20 km across

Inflow is ~ 5 km across

1 km model does not resolve the 
turbulent processes that should be 
formed by the convective 
instability
• Large eddy scale ~ 1 km

~100 m grid spacing model 
resolves the largest eddies (just) 
while smaller eddies are still 
parameterized

O(1 km) grid spacing models are 
now called ‘convection-permitting’ 
models as it is recognized that they 
don’t properly resolve convection. 

(Bryan et al. 2003, MWR)
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resolves the largest eddies (just) 
while smaller eddies are still 
parameterized

O(1 km) grid spacing models are 
now called ‘convection-permitting’ 
models as it is recognized that they 
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Understanding implicit numerical errors - a (very) brief introduction

Starting point for every numerical scheme is solving: 

With u a known constant.

The choice of spatial differencing method strongly influences the 
solution.

Example - advection of a bump



Exact solution



Numerical solution



Numerical solution

1st order differencing

2nd order differencing

3rd order differencing
4th order differencing



Using high-order temporal differencing and different spatial differencing:

e.g., 1st order differencing.

Leading order error of differencing scheme controls solution 

1st order method is strongly damping (diffusive)

2nd order method - signal travels too slowly & separates signal into 
component wavelengths (dispersive)

3rd order method - damping (slightly)

4th order method - travels too slow (slightly)

General result that odd ordered schemes are diffusive and even ordered 
schemes are dispersive - truncation errors are important!!

Summary of examples



Using high order temporal differencing and different spatial differencing:

e.g., 1st order differencing 

This is our approximation to the 1-D advection equation. i.e.,

1-st order differencing



Our difference equation is equivalent to solving the advection-diffusion 
equation with K=uDx/2 - with second order accuracy.

Therefore our 1st order approximation to the 1D advection
equation is equivalent to

The 1D advection-diffusion equation is

Where K is a diffusion coefficient



Our difference equation is a better approximation to the advection-diffusion (**) 
equation than it is to the advection equation (*)! 

For 2nd order scheme can show that leading order error term leads to dispersion.. i.e., 
different signals travel at different speeds.

The equation derived by including the leading order error terms (**) is called the modified 
equation. The modified equation determines the actual form of the solution!!

(the 1D advection equation*)

(the 1D advection-diffusion equation**)



Importance of understanding behavior of numerical methods

• Truncation errors have a large (dominant) effect on the solution at 
the smallest resolvable scale

• Whether a scheme is diffusive or dispersive matters
• Dispersive solutions can be noisy – which can be important for

one-signed variables (e.g., water vapor mixing ratio)

• Additional diffusion is normally imposed to suppress grid-scale 
noise

• Care must be taken interpreting any model output at scales less 
than ~10 Δ as the spatial / temporal variability at these scales is 
controlled by numerics



Summary

• Atmospheric models are complicated

• Often treated as ‘black boxes’ but understanding their construction, 
assumptions and limitations is important

• All aspects of atmospheric models are imperfect, but some parts are 
less perfect than others – this depends especially on the scales of 
motion you are considering



Summary


