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gional Model

- From Vincent & Lane
. (JClim 2017)
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dx=4 km WRF simulations

S Visualisation courtesy:
2009-02-01 00:00:00 Drew Whitehouse NCI




Regional Model ( 0.4 km — cloud-resolving)
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Complexity varies by application and scale
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Dynamical core

Complete equations of motion:

bu_ fv=—lé)—p+ F,
Dt 0 0X

Dv 1dp

—+ fu=———+F
Dt po"y+ 4
Dw_1ip .
Dt poz

T————

— forced equations of motion

F« is an external forcing from physics or
parameterisations.

Dt ot

-

U=(uvw)

J J J
+ U—+ V— + W—
X Jdy = 9z

1009

p

0 is potential temperature
p is density
f is coriolis

Exact form depends on assumptions /
approximation and coordinate system




How are equations solved?

Finite difference methods

A combination of spectral / grid methods

— Advantage — exact representation of horizontal derivatives
on sphere

— Physics step completed on grid

Approximations to the equation set

— (e.g., hydrostatic, anelastic, reduced compressibility, etc.)

Specific vertical coordinate (e.g., height, pressure,
terrain-following, etc.)



 Spectral methods (from ECMWF)

https://confluence.ecmwf.int/display/FCST/Spectral+representation+of+the+IFS

Spectral representation of the IFS

Created by Paul Dando on Jul 17, 2015

The IFS uses a spectral transform method to solve numerically the equations governing the spatial and
temporal evolution of the atmosphere. The idea is to fit a discrete representation of a field on a grid by a
continuous function. This is achieved by expressing the function as a truncated series of spherical harmonics:

T T i i
Aot = Y Wi DY im( ) = Y0 Y Wi P (u)e™
1=0 |ml<i 1=0 |ml<i

where u = sin@ with A the longitude and 6 the latitude of the grid point, T is the spectral truncation number
and Y |, are the spherical harmonic functions which are products of the associated Legendre polynomials,
;"(,u) and the Fourier functions, o, The spectral coefficients )y, are computed from the discrete values

known at each point of a Gaussian grid on the sphere by

e a Fast Fourier Transform in the zonal direction followed by
¢ a slow/fast Legendre transform in the meridional direction.

At each time s

e derivatives, semi-implicit correction and horizontal diffusion are computed in spectral space;
e explicit dynamics, semi-Lagrangian advection and physical parametrizations are computed in grid point

The representation in grid point space is on the Gaussian grid. The grid point resolution is determined by the
spectral truncation number, T.


https://confluence.ecmwf.int/display/FCST/Spectral+representation+of+the+IFS

o TR TR——
- Common Model Spectral Resolutions

Truncation lat x lon kmatEq degatEq

T21 32x64 625 5.61
T42 64x128 310 2.79
T62 94x192 210 1.89
T63 96x192 210 1.88
T85 128x256 155 1.39
T106 160x320 125 1.12
T159 240x480 83 0.75
1255 256x512 60 0.54
1382 576x1152 38 0.34
T799 800x1600 25 0.22

https://climatedataguide.ucar.edu/climate-model-evaluation/common-spectral-model-grid-resolutions



https://climatedataguide.ucar.edu/climate-model-evaluation/common-spectral-model-grid-resolutions
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Challenges at poles as grids become poorly defined / too closely spaced (EC reduces

the number of gr
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Unstructured hexagonal global mesh

MPAS model

Variable resolution — alternate to ‘nesting’
Requires scale aware physics schemes
Avoids challenges at poles



Computational limits

How many calculations does an atmospheric
model alone* have to perform?

2.5 x 2.5° = about 10,000 cells
30 vertical layers = about 300,000 grid boxes

At least 7 unknowns = about 2.1 million
variables

Assume 20 calculations (low estimate) for each
variable = about 42 million calculations per time-
step

Time step of 30 minutes = about 2 billion
calculations per day

100 year simulation = 73 trillion calculations

Reducing grid spacing by half (in each
dimension) can increase computational cost by a
factor of 16.

*no chemistry, prognostic aerosol, or upper atmosphere



- ————

Nested model simulations (dynamical downscaling / regional NWP):

AX =34,11.33,3.78, 1.23 km

Global model or analysis provides

initial and boundary conditions to ad
outer domain
e OQuter domain can be ‘nudged’ to €
global model/analysis o 10 <
3 2
Subsequent domains take their initial 3 . §
and boundary conditions from the next 18
coarsest domains (one-way nesting)
Depending on how model is coded -20

there can be restrictive rules about the
ratio of one grid resolution to the next
* Most models aren’t capable of
vertical resolution changes from
domain to domain

120° 125° 130° 135° 140° 145°
Longitude

Two-way nesting — high-resolution

domains feed back on coarse-

resolution domains. (Makes resolution

sensitivity studies challenging) Wapler et al. (2010, Monthly Weather Review)



esting (dynamical downscaling)
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. Refined smulahoW;ectlon with more loca

Global climate model

— —

60 km simulation

Percent change in

rainfall
50

10 km simulation

40
30
20

%

http://climatefutures.org.au/article/what-is-downscaling/




" = Refined physics as resolution

increases....

Global models /
parameterized
convection

dx O(10 km)

Convection
-permitting
2 models

Cloud-resolving
Large-eddy

Nested simulation using ACCESS / UM
Courtesy of Martin Jucker
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vement (model / data / assimilation

NWP model fore
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Sources of error

* |nitial condition errors (for initial value problems [e.g., NWP /

case studies], c.f. equilibrium experiments)

* Model physics (imperfect representation of the real world)

e Numerical errors (errors associated with numerical
approximations and finite resolution —discussed later)

* Boundary condition errors (numerical as well as regional

models constrained by imperfect large-scale conditions)



Example: Errors in physics

Relative Humidity

Mixing Ratio (H,0)

: ! —

WRFpb=1  WRFpbl=2 Point Stuart Radiosonde
(YSU pbl scheme) (Mellor-Yamada-Janjic)

(Wapler et al. 2010 simulations over Darwin with different boundary layer schemes)
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Boundary Conditions..

Periodic boundaries (global model, idealized models)

Assume that the domain is periodic or cyclic.

Periodic - repeats itself. - Equivalent to:

%il |

Periodic boundary conditions are exact (achieved through array indexing)
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Boundary Conditions..

Fixed boundaries (regional models, vertical boundaries, idealized models)

Assume that the ends of domains are walls

Equivalent to u=0 at x=0, x=L, etc.:

Fixed boundary conditions are exact (achieved through imposed velocities),
but are perfectly reflective, which is not desirable for most atmospheric

applications




Boundary Conditions..

Open boundaries (regional models, upper vertical boundary, idealized models)

Assume that the ends of domains allow information in and out (both through
advection and wave propagation)

Achieved through:
* solutions to wave equations for constant velocity / linear solutions
* sponge / absorbing layers; relaxation methods; extrapolation
Open boundary conditions are not exact in general and normally have

spurious influences on the flow within some range of the boundaries and are
partially reflective




Vertical Boundary COM.. —

* Lower boundary condition is an exact condition (fixed / reflective), where velocity
normal to the surface is zero (e.g., w=0 on flat surface)

* Upper boundary condition should be open (to permit upward propagating waves to
leave domain)

* Vertical grid is normally stretched as well — where grid spacing increases towards top
of domain.

* Example: vertically-propagating mountain waves..

Vertical velocity (0.01 m/s contour interval) Nh/U=0.2
L L D | e T e |

Vertical velocity (0.01 m/s contour interval) Nh/U=0.2
e

o T T T T T T 10" T T T
~open boundary | - M
B \\ [
L \\:\v ‘\ |' | 1
8 \ . ‘\/} ]
61— = - =
£ < ]
i 1 1
T 1 _
Q— 1 1 1 i - =
250 300 250 300

50 100

Reproduces analytic linear solution Large differences from analytic solution



Vertical Boundary Conditions — sponge layer

* Alayer that damps the perturbations in the _Vertical velocity (0.01 m/s contour interval) Nh/U=02 _
flow before they reach the upper boundary. Sponge layer ~ ™¢ model top = 20 km

e (Can be used for vertical or lateral boundaries

* Removes boundary effects, and makes bottom
or sides of sponge behave like an “open”

boundary.
* Implemented as: &V= 1 (w
Dt podx

o is damping - non-zero inside sponge layer PR FERNINTZ
and zero outside. o

* Also called Rayleigh friction / Rayleigh damping

 Model solution inside the sponge layer is not a

solution to the governing equations — should Most ‘default’ model upper
never be used! boundaries in common

community models and NWP
models are partially reflective as
the sponges are too shallow / too
weak. This can pose problems for
studies of upper-tropospheric,
stratospheric, and wave dynamics

* For this example half of entire domain is taken
up by sponge.
— Same amount of computer time is spent on sponge
compared to usable solution, so very inefficient

* Can be used in combination with other
open/radiation conditions to be more effective
and efficient




Lateral Boundary Conditions — regional model spin-up issues

Regional (nested)
models normally
“feature’ smoother
features near their
inflow boundary

A property of larger-
scale resolved flow
coming from the coarse
grid

3725

o

Distance of influence is
related to advective
timescale and timescale

of growth of small-scale
processes / instabilities >3

Can alleviate this by
seeding perturbations at
boundary, but there is
no unique way to do this

(@)500-m wind speed (ms ') (b)500-m w (ms™')
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e.g., 50 km at 20 m/s takes about 40 mins, which is
similar time for 5m/s thermal to span the 5 km
deep mixed layer twice (eddy overturn time)

Engel et al. (2013)
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« Parameterisation
» Effective resolution

 Implicit numerical diffusion and dispersion



Parameterisation

(parameterization [US], parametrization [UK])

Representation of unresolved processes using:
- Resolved scale flow.
- Some approximation, theoretical or empirical relationship linking the resolved flow to
unresolved processes.

“If this is the large scale flow, what is the small scale flow?”
or

“For a specific resolved flow, what is the unresolved flow, and how does this then
feedback on the resolved flow?”

- No unique ways to tackle this
- Approaches normally deterministic (but for many processes should be stochastic)
- Can be diagnostic or prognostic
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(parameterization [US], parametrization [UK])

What needs to be parameterised?



" Parameterisation

(parameterization [US], parametrization [UK])




Why do we parameterise?

With finite grid spacing -
Part of physical solution will be unresolved.
e.g., 10 km grid spacing:
= 100 km signals will be well resolved (see next lecture)
< 20 km signals will be unresolved
20 -100 km signals will be partially resolved

Separate full signal, u, into resolved and unresolved part of signal.

Uu=n+u, w=w+w,...
u is resolved part of signal, <17¢> =u 1.e., u1s aconstant over a grid cell
u' is unresolved part of signal, <u’> =0.

Similarly (zu') = L~t<u’> =0 () is average over grid



ot ox 0z P 0x
Re — writing assuming V-u =0

du > duw 1 dp
+ + =———

ot ox 0z p ox
Recallu=u+u w=w+w' p=p+p

A+ u') . A+ u')’ . i+ u)w+w') _Ldlp+ p)
ot 0x 0z P 0x

ouw ou oun . ouu ou'u duw ouw' Ju'w du'w' 1 d(p+p)
+ + +2 + + + + + =——

o Jt ox ox 0x oz 0z 0z 0z p ox

Take average over a grid :
oy ou'y oy _o(u')y uu') Haw)y o(aw') Hu'w) N u'w')

+ + +2 + + + + +
ot ot 0x ox ox 0z 0z 07 07

__14p) 14p)

p dx p ox




+ + + + +
ot ot ox ox ox /4 /4 /4 oz
__L1dp)_14p)
p ox p ox
—

Ju oun Nu'u') guw Hu'w' 1 dp
i o Huu) | g Huw)  Lp
Jt  ox 0xX oz 774 P ox
assuming V.ii =0 gives

ou ao"_b~t+ Wo"_ft+ _ 1dop_ Nu'u') _ Nu'w')
ot 0X oz (68175 ox oz

Therefore, the resolved scale motion is forced by the unresolved motion. These
terms on the RHS are called the subgrid-scale Reynolds stress terms.

To be physically consistent, our model must incorporate some forcing from
subgrid-scale processes — hence we need to parameterise them.



Parameterisation

This Reynolds average approach is the basis of parameterizations of all dynamical
processes (e.g., turbulence and mixing, boundary layers, surface drag, gravity wave drag,
deep convection, shallow convection).

Other parameterizations of physical/chemical processes (e.g., microphysics, radiation,
chemistry, aerosols) are slightly different as they are representing the grid-scale
forcing/tendency from much smaller-scale reactions determined by the large-scale flow.

For example:
radiation: DT/Dt = F,, + F,,, where the forcing is calculated by solving a set of
integrodifferential equations with parameters determined by the resolved flow

microphysics: growth / decay of microphysical classes is determined by the grid-scale
temperature and pressure, this leads to a tendency on the grid-scale water vapor mixing
ratio and temperature
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Dynamical parameterisation example: Sub-grid scale mixing/turbulence

One approach: turbulence theory (K-theory) tells us that:

duu) g i 9
OX 07X B 0';_X Provides a simple way to relate sub-grid terms to
. resolved part of the flow.
IUwW) 9 Z( K @)
4 % 0Z

So our Reynolds averaged equation reduces to:

ol .90 . dl 1ap+a(Kau)+ aZ(K@)
gt 9x 9z  pdx X\ 9x) 9Z\ 0z

If K is a constant, this is the advection-diffusion equation.

K is called the sub-grid scale diffusion coefficient.
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Dynamical parameterisation example: Sub-grid scale mixing/turbulence

The system is still not closed as K needs to be defined. Defining K is the ‘closure’

For turbulence, K is defined by amplitude of expected turbulent motion.

K << 1 when flow is stable and laminar
K >> 1 when flow is turbulent.

Only way to determine K is using resolved scale features of the flow.

Many ways to do this. Smagorinsky closure

. , K=0 Ri > 0.2 S
e.g., Smagorinsky closure:
Ri is the Richardson number K = CAX?210.25- Ri |1/2 Ri<0.25

Flow is turbulent if Ri<0.25 NZ
whereRi=——
o 2
(%)
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Dynamical parameterisation example: Sub-grid scale mixing/turbulence

Types of ‘closures’

- Zero-order closure:
- assume <u’w’> =0, etc.

-1st-order closure:
- parameterise fluxes as ‘diffusion processes’, as in previous example
- diffusion coefficients determined from diagnostic relations

- 2nd-order closure: — 5
- derive prognostic equation such that: M — _M
Dt IX
- the triple product terms would then need parameterising (in terms of double
products). E.g. 0"L/W
Uuw =-K——
oX

- this makes the scheme a prognostic scheme (as opposed to diagnostic)
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Convective parameterisation

ArriL 1974 AKIO ARAKAWA AND WAYNE HOWARD SCHUBERT 675

F16. 1. A unit horizontal area at some level between cloud base and the highest
cloud top. The taller clouds are shown penetrating this level and entraining environ-
mental air. A cloud which has lost buoyancy is shown detraining cloud air into the
environment,

Parameterisation of the convective mass flux (Mc = pow,, where o is the fractional area
of clouds) for a population of clouds normally represented by idealized plumes
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For all parameterisations there is a fundamental assumption of a separation of scale
between the resolved flow and the process being parameterised.

* Parameterisation formulated on atmospheric columns (no ‘knowledge’ of state of

adjacent grid boxes)
e E.g., convection: area of convective plumes much smaller than area of grid box

* For dynamical parameterisations equivalent to saying that many individual elements
form part of Reynolds average
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The grey zone

As resolutions increase the
parameterization assumptions are

. A
violated. ~10 km ~1 km
<_i‘7 the _’:_>
Scales where the parameterized oK) W IR00NS |
. mesoscale LES
processes become partially limit limit
resolved

Large convective clouds - ~¥1-10 km

Boundary layer eddies and
turbulence ~<1 km

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5

L , K
Normally parameterisations are /A meso Ve 1B eg
H H 4 I
still used in grey zone even FI1G. 1. A schematic of the turbulence spectrum (k) in the hori-
though the fundamental zontal plane as a function of the horizontal wavenumber magnitude

i behind th k. Its peak is at k ~ 1/l, with [ the length scale of the energetic
assumptions benin ose eddies; A is the scale of the smoothing filter. In the mesoscale limit

parameterisations are violated (left), A, > [ and none of the turbulence is resolved. In the LES
limit (right), A, < [ and the energy-containing turbulence is re-

solved.
Wingaard (2004, JAS)



‘* .W Forecasts: «-====+=-=-
° . Lindborg (1999, eqn 71)
Effective model resolution 106 22 o orecast
R effective resolution
R 2 Ax,
Models do not properly resolve the T, e
dynamics/physics they are trying to 3
represent on the grid scale. effective
102 resolution
~ 7 AX
Numerical errors are maximized at the - (~154km)
grld scale 10° 10 km forecast,
effective resolution
Implicit and explicit numerical diffusion E s
reduces the energy at the smallest o ;
effective
represented scale resolution |\
102 ~ 7 AX y
(~70 km)
The effective resolution of a model L R A
. . 10
ends up being about 7-10 times the “ R
grid scale. ® 3
* Resolution does not equal grid £ 4o
spacing! i
effective
resolution
10° =7
To properly resolve a phenomenon the (~2§ ,:;‘,,)

grid spacing needs to (at least) be 10 109 102 10

times smaller than the scale of the
phenomenon

Wavelength (km)

Fic. 11. Effective resolution determined from forecast-derived
spectra for the BAMEX-configured WRF model at 22-, 10-, and 4-km
horizontal grid spacing. The model forecast spectra are those plotted
in Fig. 3.

Skamarock (2004)
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Example: cloud-resolvin

Squall line is ~ 20 km across
Inflow is ~ 5 km across

1 km model does not resolve the
turbulent processes that should be
formed by the convective
instability

* Large eddy scale ¥ 1 km

~100 m grid spacing model

resolves the largest eddies (just)
while smaller eddies are still §
parameterized &

O(1 km) grid spacing models are
now called ‘convection-permitting’
models as it is recognized that they

N ! r r| r |V nv ion. FIG. 1. Across-line cross sections of equivalent potential temperature (6,, in K) from strong-
dO t p Ope Y esolve convectio shear simulations at 180 min using (2) 1000-m gnd spacing (at y = 49) and (b) 125-m gnid

spacing (at y = 56 km).

(Bryan et al. 2003, MWR)
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Example: cloud-resolvin

Squall line is ~ 20 km across
Inflow is ~ 5 km across

1 km model does not resolve the
turbulent processes that should be
formed by the convective
instability

* Large eddy scale ¥ 1 km

~100 m grid spacing model
resolves the largest eddies (just)
while smaller eddies are still
parameterized

O(1 km) grid spacing models are
now called ‘convection-permitting’
models as it is recognized that they
don’t properly resolve convection.

FIG. 2. The same as in Fig. 1 except along-line cross sections using (a) 1000-m grid spacing
(at x = 200 km) and (b) 125-m grid spacing (at x = 207 km).

(Bryan et al. 2003, MWR)



Understanding implicit numerical errors - a (very) brief introduction

Starting point for every numerical scheme is solving:

W u”? 0
Jat  ox

With u a known constant.

The choice of spatial differencing method strongly influences the
solution.

Example - advection of a bump



Exact solution
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Numerical solution

C=0.25 at 0.00000se

1 T 1 I T T 1 l T 1 l 1 1 T l 1 T T

0.8
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Numerical solution

C=0.25 at 2.00000se

1 I 1 I I 1 1 I 1 1 I 1 I I I 1 I I

1.0 4t order differencing — _
0.8
0.6
0.4

0.2 —

)
' /2" order differencing
_0.2 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 l 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0




Summary of examples

Using high-order temporal differencing and different spatial differencing:

e.g., 1st order differencing. @ N U¢i’n — ¢i—1,n -0
ot AX

Leading order error of differencing scheme controls solution

1st order method is strongly damping (diffusive)

2nd order method - signal travels too slowly & separates signal into
component wavelengths (dispersive)

3rd order method - damping (slightly)
4th order method - travels too slow (slightly)

General result that odd ordered schemes are diffusive and even ordered
schemes are dispersive - truncation errors are important!!



mmfferencmg |
Using high order temporal differencing and different spatial differencing:
0 )Y
e.g., 1st order differencing —¢ + U¢I’n ¢/—1,n =(
Jdt AX

This is our approximation to the 1-D advection equation. i.e.,

I, B9 99, [, O(Ax))=0
ot AX ot oxX

Remember

2
% ;)‘f” = Zﬁ— AZX Zx(ﬁ + O(AX®) therefore,

op b= 9P [dp AXI% _
it Ax _at“{ax Zax2+O(AX2)) 0

Retaining leading error term gives

6_¢+ L{a(b _AXo”qu + O(AXZ))=O

at  \dax 2 ox°



Therefore our 1%t order approximation to the 1D advection
equation is equivalent to
ap . [I¢ _AX 9%
Jt X 2 Ix°

+0(Ax?)|=0

b P UAX %P
- = AX°
dt " u(3’X 2 Ix° +0Ax)

The 1D advection-diffusion equation is
- nd

W, 9 _ 7

ot ox = ox°

,» Where K is a diffusion coefficient

Our difference equation is equivalent to solving the advection-diffusion
equation with K=uAx/2 - with second order accuracy.



0')_¢+ U('b (p/ 1 O

dt AX

IS a 1st order approximation to

J : :
2y’ 0 (the 1D advection equation™)

ot oX
but a 2nd order approximation to
9, 09 _ UAXJ 0
ot ax 2 ox°

(the 1D advection-diffusion equation™*)
Our difference equation is a better approximation to the advection-diffusion (**)
equation than it is to the advection equation (*)!

For 2"d order scheme can show that leading order error term leads to dispersion.. i.e.,
different signals travel at different speeds.

The equation derived by including the leading order error terms (**) is called the modified
equation. The modified equation determines the actual form of the solution!!




Importance of understanding behavior of numerical methods

e Truncation errors have a large (dominant) effect on the solution at
the smallest resolvable scale

 Whether a scheme is diffusive or dispersive matters
* Dispersive solutions can be noisy — which can be important for
one-signed variables (e.g., water vapor mixing ratio)

e Additional diffusion is normally imposed to suppress grid-scale
noise

e Care must be taken interpreting any model output at scales less
than ~10 A as the spatial / temporal variability at these scales is
controlled by numerics



Summary o —

« Atmospheric models are complicated

« Often treated as ‘black boxes’ but understanding their construction,
assumptions and limitations is important

» All aspects of atmospheric models are imperfect, but some parts are
less perfect than others — this depends especially on the scales of
motion you are considering



‘Summary




