

Radars and Rainfall Extremes

How can we make use of long-term radar observations and modelling to better characterize and understand rainfall extremes in Australia ?

<u>Alain Protat</u> Australian Bureau of Meteorology

Joshua Soderholm, Valentin Louf, Sugata Narsey, Rob Warren, Christian Jakob Monash University

Measuring Rainfall ...

- Point measurement : rain gauge, disdrometers. Typical resolution 1 to 10 minutes, generally aggregated to 1 hour or 1 day
 - Pro : accurate (but not perfect !) measurement
 - Con : cannot capture spatial variability of rainfall (unless you are very rich)
- Convective scale and mesoscale (300*300 km) : weather radars. Typical resolution of radar products ~ 1 km (horizontal) x 0.5 km (vertical) , 1 obs every 5-10 minutes at each point. New opportunistic observations : microwave links from phone companies (not exploited yet in Australia)
 - Pro : spatial coverage, large range of rainfall values (light to extreme)
 - Con : accuracy → geometry, beam blocking, rain/hail mixture, clutter, insects, birds, fire, chaff, UFOs, ...
- Regional (1000s kms) and global scale : polar-orbiting and geostationary satellites using a combination of microwave, vis, IR, and radar sensors. To some extent, denser parts of operational radar networks for some regions.
 - Pro : only way to get rainfall at those scales
 - Con : accuracy (esp. land), temporal resolution (at least 3h)

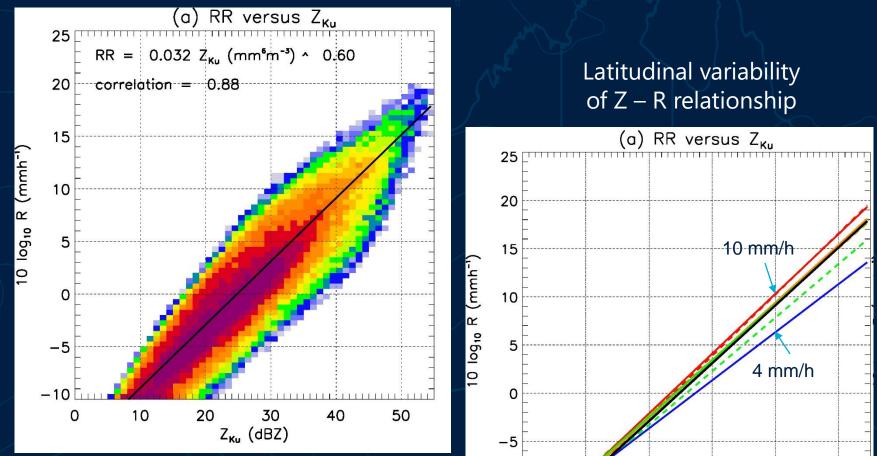
Characterizing Rainfall Extremes with Radar!

• General consensus for city-scale / small region studies of rainfall extremes:

Radars assisted with rain gauge data. Mesoscale coverage + time resolution needed for process studies Microwave link retrievals should one day be added to that list. Bureau solution (single-pol radars): **Rainfields** (blended radar – rain gauge)

• Reasons :

Regions where people live in Australia are well covered by decent radars Dual-polarization radars are coming (but no historical data) Dense rain gauge networks where people live (+ a lot of microwave links) → Accuracy of radar-derived rainfall estimations is at its highest


WCRP Core indices for sub-daily precipitation and longer time scales can all be estimated using radar reflectivities converted to rainfall rate.

Weather Radars

- Radars provide quantitative information on convective clouds in a ~ 300 km x 300 km and over the whole troposphere. The same point is measured every 5-10 mins
- Volumetric sampling : azimuthal scans for about 15 elevation angles
- Typical resolution of radar products ~ 1 km (horizontal) x 0.5 km (vertical)
- Primary measurement is reflectivity, which relates to the intensity of convection (rainfall rate close to the ground, ice water content aloft) and important convection properties (CTH, CAF, etc ...)
- Doppler radars provide additional information on convective dynamics (3D winds, mesocyclone detection) inside convection and also clear-air at close range (<20-30 km)
- Dual-polarization radars provide better estimates of high rainfall rates, hail identification and size, rainfall rate in rain/hail mixture, in partial beam blocking situations (orography) - no long-term record yet in Australia except CPOL (Darwin)

-10

0

10

20

30

 Z_{κ_u} (dBZ)

Weather Radars ... Are ... NOT ... perfect ?

Protat et al. 2019, in prep.

40

50

Lotitude

67.50

45.00

22.50

0.00

-22.50

-45.00

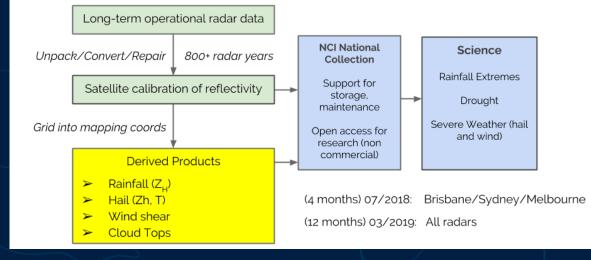
67.50

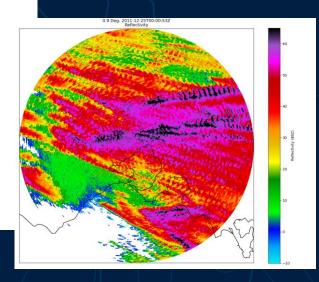
The Australian Operational Radar Network

• Four capital city operational radars upgraded to dual-pol (yay !)

Dual-pol Upgrade
 May – September 2017

- Buckland Park (Adelaide)
- Mt Stapylton (Brisbane)
- Terrey Hills (Sydney)
- Laverton (Melbourne)


Next ones ordered (FY18-19):


- Esperance, Albany, Geraldton (WA)
- Tindal (NT)
- New 10 yr + radar contract signed (new radars = dual-pol !)

Bureau of Meteorology

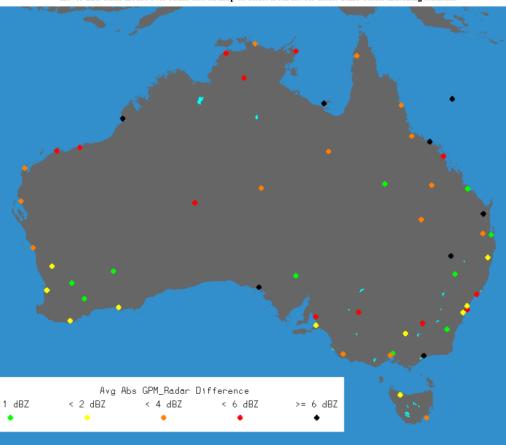
Building a National Operational Radar Archive (Joshua Soderholm)

Status :

Completed for all radars: **Collation** (from 4 archives, daily files, naming convention), **Recovery** (15-20% corrupted, repaired), **Conversion** (HDF5 Odim + daily image of max ref), **Calibration** (TRMM/GPM+clutter)

Prototype **gridded rainfall**, hail size and azimuthal shear available for the Brisbane, Melbourne and Sydney radars (18-20 yrs)

Next steps : CTH, clutter, attenuation, better rainfall, other radars, training



Bureau of Meteorology

Building a National Operational Radar Archive: Radar data quality control underpins everything !

Operational Australian Weather Radar network : GPM Satellite matching Hover and Click mouse over radar site on map or select from list for latest Time-Series matching statistics

Fantastic work from R. Warren, V. Louf, M. Whimpey, J. Soderholm

Radar sources of uncertainties for rainfall

- Removal of non-meteorological echoes : major problem is ground clutter. High reflectivity = artificially high rain rates near ground !
 - Mitigation for the Open Radar Archive: additional corrections, looking for permanent echoes with high reflectivities / low Doppler.

Regional variability of the Z – R relationship

- Mitigation for the Open Radar Archive: local relationships are derived from ~matched rainfall from gauges and radar reflectivity above rain gauge
- Convective and stratiform relationships will be derived and used.
- Partial or complete **beam blocking** in orographic areas = artificially low rain rates
 - Mitigation for the Open Radar Archive: identify + correct cases that can be
- Rain / hail mixture = artificially high rain rates
 - Mitigation for the Open Radar Archive: not much we can do about that for single-pol radars. Some threshold on Z will be applied (~55 dBZ). This could have effects for extremes (to be investigated, probably with dual-pol data)

Characterizing Rainfall Extremes ...

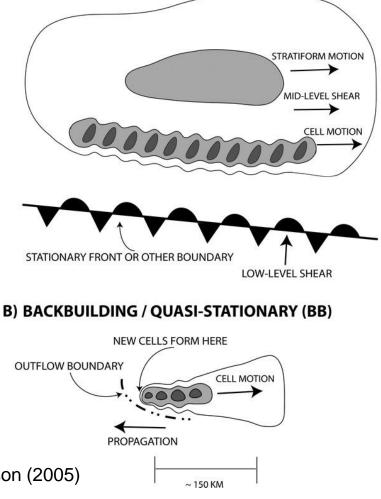
- A heavy rainfall case will be labelled "extreme" because of its impact.
 - Should we study different types of extremes : producing flash floods, floods due to high accumulation, high total rainfall regionally producing basin-scale issues, longer timescale accumulations of rain ?
 - If we have to, should the indice(s) used to characterize extremes be tailored to the actual type of extreme: high percentile of rainfall PDF, threshold on instantaneous rainfall rate, on accumulated rainfall rate, etc ...
 - If this is a proper framework, next we need to characterize :
 - The morphology of heavy rainfall cases : what do they look like ?
 - The large-scale "conditions" or "forcing" or "environment" conducive to each type of extremes, using these tailored indices
- Is the same sort of discussion also relevant to heat extremes ?
 Should we discuss the use of collaborative tools ? (LS forcing ?)

Characterizing Rainfall Extremes with Radar

- With a high-quality database of radar rainfall extreme cases, we need to study:
 - The morphology of extreme cases and associated processes: their internal structure, mesoscale organization, distribution of convective properties, the relative importance of warm versus cold rain processes, presence of hail, mesocyclones, etc ...
 - The composite analysis of these cases to understand physical processes: group all cases to investigate their life cycle, their diurnal cycle, statistically.
 - The large-scale environment conducive to these extremes : either using reanalyses (maybe OK for the midlatitudes ?) or the so-called variational analysis (recommended for the sub-tropics and tropics)
- High-resolution model evaluation / improvement -> simulations can then be used to extend the radar process studies with what radars can't measure
- Global models' cumulus parameterization improved using statistical radar analyses
 -> how will rainfall extremes change in a changing climate?

Mesoscale convective systems (MCSs)

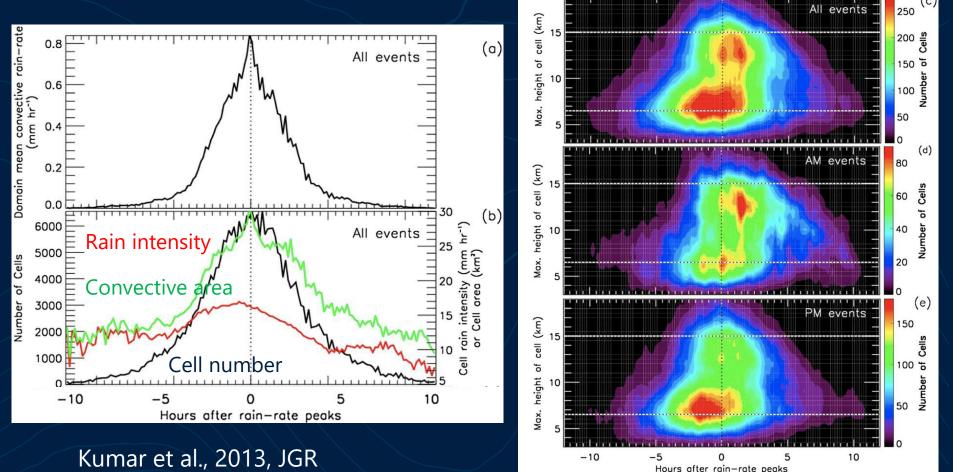
Schumacher and Johnson (2006):


- Of all extreme (50-yr) 24-h rain events in the eastern CONUS during 1999–2003, over 66 % were associated with MCSs
- Of these, >33 % were training line / adjoining stratiform (TL/AS) systems and ~20 % were back-building (BB) systems

Stevenson and Schumacher (2014):

- Of all extreme (100-yr) 24-h rain events in the eastern CONUS during 2002– 2011, over 63 % were associated with MCSs
- Two of the top ten events were associated with TL/AS MCSs (the rest were synoptic or tropical systems)

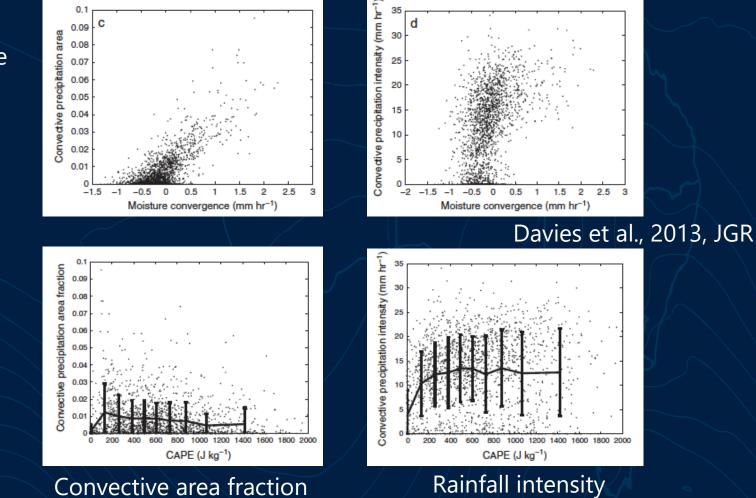
Schumacher and Johnson (2005)


Stolen from Rob Warren ③

AMOS Workshop on High Impact Weather Predictability and Processes

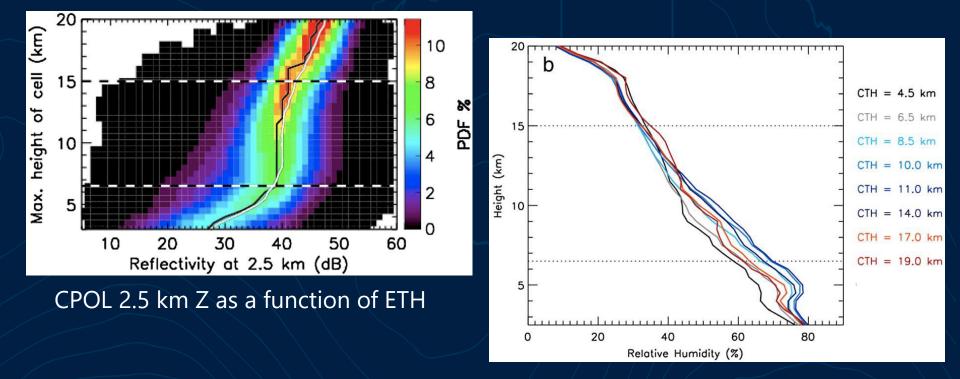
Composite life cycle of 144 heavy tropical rain cases

 The composite time evolution confirms dominant role of area fraction. Gradual growth of cloud depth from congestus to deep, but they also coexist.



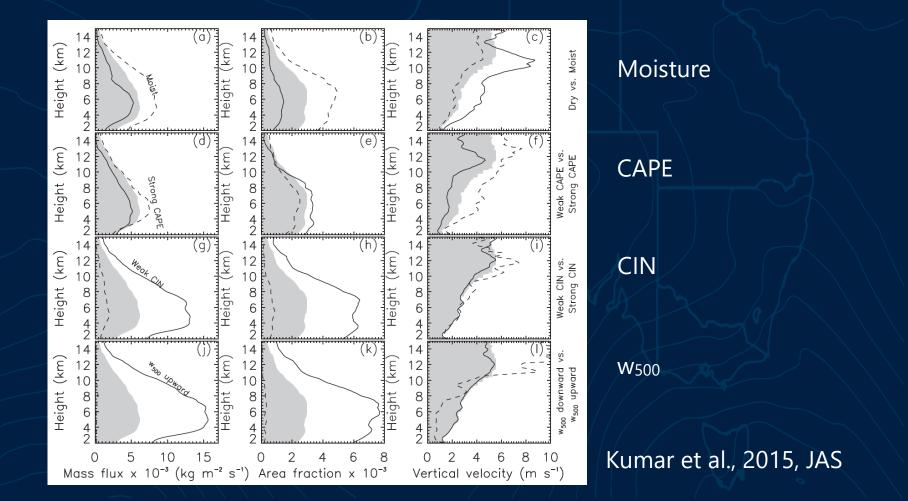
What drives convective area fraction ?

• Convective area fraction is strongly related to convergence (vertical motion, moisture), not to CAPE – most parameterizations use CAPE


CAPE

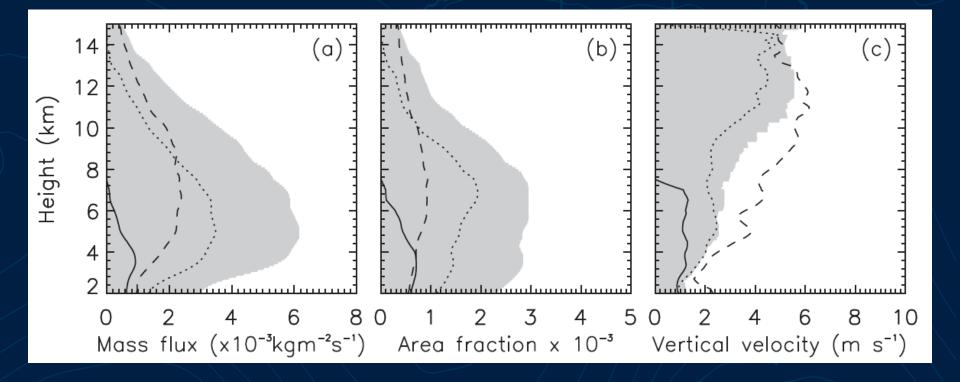
Convective types and associated rain

 Using CPOL radar echo top height, we identify 3 types of precipitating convection (not including shallow convection). The most extreme rainfall (at 10-mn timescale) originates in overshooting convection, which itself occurs in a relatively dry environment.



Kumar et al., 2013, JGR

Large-scale controls of convection


 Moisture strongly affects area fraction and velocity in opposing ways, CAPE mostly affects velocity and CIN and w₅₀₀ control the existence of convection.

Contribution of convective populations to total convective mass flux

• The three convection types contribute to total mass flux in unique ways, with different vertical distribution.

Kumar et al., 2015, JAS

- Radars are awesome but not perfect !
- Radars can be used to understand the mesoscale organization of extremes
- The National Open Radar Archive will be an invaluable resource
- Radars and a description of the largescale environment can be used to understand what large-scale conditions are conducive to extremes
- Radars can be used to evaluate and improve high-resolution models and global model parameterization of convection
- Big questions :
 - What are the spatial and temporal distributions of storms producing rainfall extremes in Australia?
 - What are the large-scale and mesoscale processes involved in Australia?
 - What are the primary organisational modes of convection?
 - How predictable are Australian storms producing rainfall extremes given current and soon-to-be operational forecast systems?
 - How is climate change likely to influence storms producing rainfall extremes in Australia?

Australian Government Bureau of Meteorology

Thanks

Alain Protat : <u>alain.protat@bom.gov.au</u>

Tel: +61 3 9669 8128