

Exploring changes in extreme rainfall over Australia

Margot Bador¹, Sugata Narsey², Ghyslaine Boschat², Stefan Contractor¹ and Lisa Alexander¹

CLEX annual workshop, 21.11.2018

¹ Climate Change Research Centre, UNSW Sydney

² Monash University

- 1. Context Rainfall extremes and their changes by the end of the 21st century
- 2. Focus on Australia: observations and model projections
- 3. Future plans Constraining the projections over Australia
- 4. Conclusion and future work

Rainfall extremes response to warming

Physical considerations

• atmospheric specific humidity is expected to increase with temperature by $\approx 7\% K^{-1}$ (Clausius-Clapeyron)

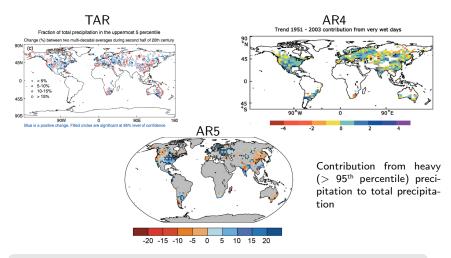
Allen and Ingram (2002); Trenberth et al. (2003); Held and Soden (2006)

• changes in extreme rainfall are primarily controlled by the change in total atmospheric moisture availability

Allen and Ingram (2002); Allan and Soden 2008

An intensification of rainfall extremes is expected in response to warming

Allan and Soden (2008); Trenberth (2011)


IPCC results - AR5

From model and observational evidence:

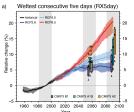
"there is high confidence that the intensity of extreme precipitation events will increase with warming, at a rate well exceeding that of the mean precipitation"

Collins et al. 2013

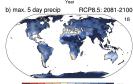
Observational evidence

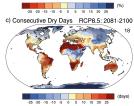
No improvement in coverage between IPCC Assessments for long-term global extreme precipitation trends

Observed trends in extreme rainfall


Trends (1950-2013) in the wettest day in a year or season

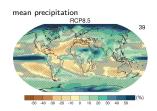
REGEN dataset, Stefan Contractor

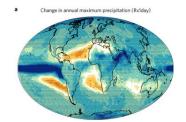

Over land, more increase than decrease in extreme precipitation is observed in the instrumental record


Groisman et al. 2005; Alexander et al. 2006; Westra et al. 2013; Donat et al. 2013

Model evidence - Future change in extreme rainfall

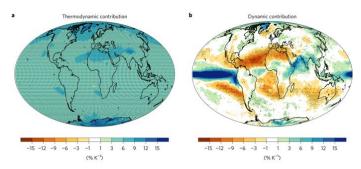
Context 0000000

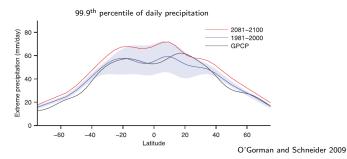



Late 21st century changes

- from 5% (RCP2.6) to 20% (RCP8.5) more precipitation during very wet 5-day periods
- few regions where this index decreases in the RCP8.5 scenario coincide with areas of robust decreases in the mean precipitation
- longer dry periods in semi-arid regions of subtropics and midlatitudes

Collins et al. (2013), AR5


Thermodynamical vs. Dynamical changes


Pfahl et al. (2017)

Context

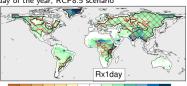
0000000

Model limitations

global climate models

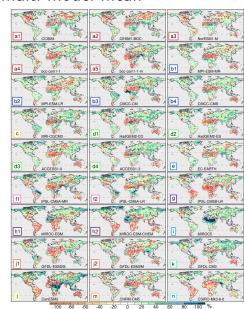
- parameterize the convective processes
 - ightarrow climate models are not reliable in the tropics

Kharin et al. 2013; O'Gorman 2015

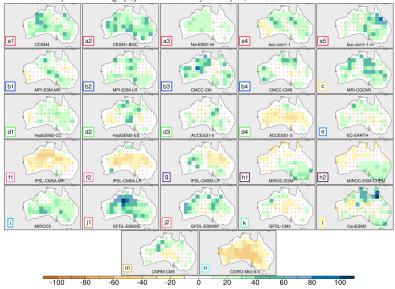

- generally precipitate too often and too lightly
- ightarrow it affects the frequency, not necessarily the intensity of rainfall extremes

Stephens et al. 2010; Dai 2006

- 1. Context Rainfall extremes and their changes by the end of the 21st century
- 2. Focus on Australia: observations and model projections
- 3. Future plans Constraining the projections over Australia
- 4. Conclusion and future work


Behind the multi-model mean

Late 21st century relative change (%) in the wettest day of the year. RCP8.5 scenario


Sources of uncertainties

- inter-model differences (structural uncertainty)
- internal variability uncertainties (aleatoric uncertainties)

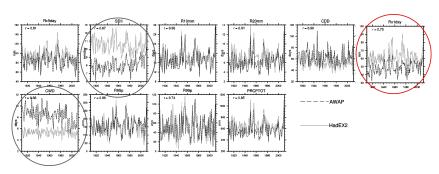
Behind the multi-model mean

Late 21st century relative change (%) in the wettest day of the year, RCP8.5 scenario

Annual projections

- increase in the most intense rainfall events with few regions of significant and robust change across the models
- decrease in mean rainfall over most regions consistent with increase in dry days

Hope (2006); Alexander and Arblaster (2017)


Spatial aggregation

Model evaluation - which observations?

Guidance document in preparation!

Products compare relatively well over Australia!

Model evaluation - which index?

Alexander and Arblaster (2017)

How do observations compare for different indices?

- generally well but big differences in some indices
- relatively well for Rx1day

- Context Rainfall extremes and their changes by the end of the 21st century
- 2. Focus on Australia: observations and model projections
- 3. Future plans Constraining the projections over Australia
- 4. Conclusion and future work

Annual cycle of precipitation

Constraining the projections

•0000

Size of the system leading to extreme rainfall

Synoptic conditions leading to extreme rainfall

Influence of modes of variability

Objectives

- 1. Diagnose modes of variability in observations
- 2. Analyse the seasonal modulation of the teleconnections and compare to literature (e.g. King et al. 2014)
- 3. Compare the simulated and observed teleconnection patterns
- 4. Constrain projections by mode of variability influence

- 1. Context Rainfall extremes and their changes by the end of the $21^{\rm st}$ century
- 2. Focus on Australia : observations and model projections
- 3. Future plans Constraining the projections over Australia
- 4. Conclusion and future work

Conclusions

Changes in extreme rainfall over Australia

Compared to other regions of the globe :

- some of the largest uncertainties because of large inter-model differences and large uncertainties due to internal variability (dynamical changes)
- observations compare relatively well

Future works

Constraining future projections of extreme rainfall

- early stage for all the different approaches, everyone interested in is welcome to join!
- model evaluation across the centre

Thank you, questions?