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What	are	precipitation	extremes?

•Heaviest	rainfall	events

•Defined	as	high	percentile	
of	distribution		
• (e.g.,	annual	maximum	daily	rainfall)

•Range	of	time	and	spatial	
scales	of	interest 2010	Pakistan	floods	(photo:	UPI)



Are	precipitation	extremes	stronger	in	a	
warmer	world?



Observations	indicate	higher	global	temperature	is	
associated	with	more	intense	precipitation	extremes

gauges and partly because of the uneven distribution of
land areas and oceans; this should also be taken into
account when interpreting the results.
Considering first the fraction of stations exhibiting

significant increases (Fig. 12, middle), it can be seen that
there are some clear meridional variations, with the
largest proportion of stations that have positive associ-
ation with global mean near-surface temperature lo-
cated near the equator and a second maxima at about
558N. The two locations with the minimum fraction of
significant positive associations are at 158S and 68N. It is
noted that the resampling methodology takes the lower
sample sizes near the equator into account, with the
confidence interval being much wider in the less well
gauged parts of the domain. The results of our analysis
are reasonably consistent with the model-derived results
under a future greenhouse gas–enhanced climate (Kharin
et al. 2007), except that the latitudes with the minimum
fraction of positive associations are closer to the equator
compared with the modeling studies.
Finally, we plot the median estimate of the sensitivity

of annual extreme precipitation per kelvin warming by
latitude (Fig. 12, bottom). The general pattern reflects
the conclusions of the middle panel, with the largest
positive associations near the equator and a second
maxima occurring in the higher latitudes of the North-
ern Hemisphere. Minima exist at 138S and 118N, and
both these minima are not statistically significantly dif-
ferent from the null hypothesis, which is that there is no
trend at these latitudes.

4) IMPLICATIONS WHEN USING DIFFERENT DATA

PERIODS

All of the results from the preceding analysis were
based on the set of stations between 1900 and 2009 with
at least 30 years of data, with the median number of
years per station in this dataset being 53 years. As dis-
cussed in section 2, the number of stations with rainfall
data increased significantly in the first half of the twen-
tieth century, plateauing from about 1960. Therefore,
the majority of the dataset is likely to be from the latter
part of the record, although sequences from the early
part of the twentieth century are also included in the
analysis.
To ensure that the results are not substantially influ-

enced by the period of record or the median length of
record, we conduct the analysis on different subsets of
data, summarized in Table 1. The first three analyses
consider the full period from 1900 to 2009 but use dif-
ferent thresholds for the minimum record length. The
last two analyses are for the different periods of record,
with the first 60 years of the twentieth century compared
with the last 40 years of the twentieth century and the
first 10 years of the twenty-first century.
Considering the first three analyses, it can be seen in

Table 1 that by increasing theminimum number of years
to be analyzed from 30 to 70 years, the number of sta-
tions meeting this minimum threshold drops dramati-
cally from 8326 stations to 2124 stations. Interestingly,
the percentage of stations with positive associations, and

FIG. 11. Global median of estimates of the local sensitivity of annual precipitation extremes
to a 1-K increase in global mean near-surface temperature. The histogram represents the
distribution of results from 1000 bootstrap realizations of the global annual maximum rainfall
data, and the red dot represents the value from the observed data.
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Observational	estimate	of	sensitivity	of	annual	maximum	daily	precipitation	to	global-mean	temperature	
(Westra et	al.,	2013)
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Extreme	precipitation	events	over	most	of	the	mid-latitude	
land	masses	and	over	wet	tropical	regions	will	very	likely	
become	more	intense	and	more	frequent	by	the	end	of	this	
century,	as	global	mean	surface	temperature	increases.

IPCC,	AR5,	Summary	for	policymakers	



How	much	will	precipitation	extremes	change	
in	Wollongong	by	2100?	



•Why	do	we	expect	precipitation	extremes	to	
increase	with	warming?

•How	can	we	constrain	the	magnitude	of	future	
changes	in	precipitation	extremes	at	regional	
scale



What	sets	the	upper	limit	on	precipitation	
rates?



What	sets	the	upper	limit	on	precipitation	
rates?

•Heaviest	rainfall	constrained	by	available	water	
vapour?	(Trenberth,	1999)
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What	sets	the	upper	limit	on	precipitation	
rates?

•Heaviest	rainfall	constrained	by	available	water	
vapour?	(Trenberth,	1999)
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What’s	wrong	with	this	argument?



Heavy	precipitation	events	draw	in	moisture	
from	their	surroundings!



Instead,	consider	the	dynamics	of	
precipitation	extreme	events	themselves

𝑃" = 𝜖			×			𝜔		×				𝑞)	
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Humidity	is	not	the	only	factor	controlling	precipitation	extremes

e.g.,	O’Gorman	&	Schneider	(2009);	Muller	&	O’Gorman	(2011);	Singh	&	O’Gorman	(2014)



Precipitation	extremes	under	warming
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Simple	thermodynamic	scaling	for	
precipitation	extremes

• If	𝜖 and	𝜔 remain	constant:

𝑃" ∝ 𝑞)

•Precipitation	extremes	increase	at	roughly	4-7%/K	

•Similar	to	Clausius-Clapeyron scaling

Do	we	expect	precipitation	extremes	to	scale	with	
moisture	content	after	all?



Efficiency	potentially	important	for	
convective-scale	extremes

• 𝜖 represents	the	efficiency	of	turning	large	rates	of	column	net-
condensation	into	large	precipitation	rates

Measure	of	𝜖 for	simulations	of	RCE	at	different	surface	temperatures	
(Singh	&	O’Gorman.,	2014)
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Figure S3: Mean vertical velocity profiles for columns in which the instantaneous column net-
condensation rate exceeds its 99.99th percentile. (a) Lin-hail simulations with mean temperatures
of the lowest model level (Ts) of 277 (black), 292, 298 and 309 K (orange). (b) Lin-graupel simulations
with Ts equal to 277 (black), 292, 298 and 308 K (orange). (c) Thompson simulations with Ts equal
to 277 (black), 292, 298 and 308 K (orange).
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Figure S4: Condensation e�ciencies [✏C ; defined in (S3)] and precipitation e�ciencies [✏P ; defined in
(1)] as a function of the mean temperature of the lowest model level (Ts). Results for simulations using
the Lin-hail (black), Lin-graupel (gray) and Thompson (dashed) microphysics schemes are shown.
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At	large	time	and	space	scales	(e.g.,	daily	
extremes	at	GCM-gridbox scale)	changes	in	

efficiency	unimportant	for	changes	in	
precipitation	extremes

But	dynamics	are	important!



In	model	projections,	thermodynamic	
contribution	dominates	in	the	

extratropics

Climatology Project (GPCP) (19) (Fig. 1). However, there are
considerable uncertainties in observations of precipitation, and
other studies using different datasets or different measures of
precipitation extremes have found that climate models under-
estimate precipitation extremes relative to observations (10–12,
†). The simulated precipitation extremes increase at all latitudes
as the climate warms, particularly in the tropics where they are
largest (Fig. 1). The water vapor content of the atmosphere also
increases at all latitudes, but precipitation extremes do not scale
with the water vapor content (Fig. 2). In the multimodel median,
precipitation extremes increase with global-mean surface air
temperature at a smaller rate than the zonal-mean atmospheric
water vapor content (Fig. 2). For example, at 60°N, the 99.9th
percentile of daily precipitation increases at 6% K!1 in the
multimodel median, compared with 10% K!1 for the atmo-
spheric water vapor content. (Both rates of increase are nor-
malized by the change in global-mean surface air temperature
for each model before taking the median among all models.)
There is larger intermodel scatter in the tropics than in the
extratropics in both the precipitation extremes and their frac-
tional changes with warming (Figs. 1 and 2).

Precipitation extremes also do not scale with water vapor
content in individual models. Extratropical precipitation ex-
tremes consistently increase less rapidly with surface air tem-
perature than does the extratropical water vapor content (Fig.
3A). The rate of change in tropical precipitation extremes varies
widely among models; changes in tropical precipitation extremes
normalized by the increase in tropical surface air temperature
range from 1.3% K!1 to 30% K!1. (Models with small tropical
increases can be more easily distinguished in Fig. S1, which is the
same as Fig. 3 but with logarithmic axis scales.) In most models,
tropical precipitation extremes increase less rapidly than or at a
similar rate as tropical water vapor content; for two outlying
models (both from GFDL), the increases in tropical precipita-
tion extremes are much greater. The behavior of tropical pre-
cipitation extremes in the GFDL models is also sensitive to the
percentile considered, with close to zero ("1% K!1) changes in
tropical precipitation extremes at the 99th percentile.

Precipitation extremes may occur preferentially in certain
seasons or at certain longitudes. Furthermore, one may hypoth-
esize that precipitation extremes depend on the saturation water
vapor content of the atmosphere when they occur, rather than on

†Models and observations may agree more closely in our study than in some other studies
in part because we use percentiles of precipitation including all days (dry and wet) and
because we spatially average observations to typical model resolution. The precipitation
extremes scaling discussed below implies that if models approximately reproduce the
distribution of vertical velocities but inaccurately simulate the frequency of wet days,
inclusion of all days in the percentile analysis will give the most favorable comparison.

Fig. 2. Fractional changes in the 99.9th percentile of daily precipitation
(blue), zonally averaged atmospheric water vapor content (green), saturation
water vapor content of the troposphere (black dotted), full precipitation
extremes scaling (Eq. 2) (red dashed), and thermodynamic scaling for precip-
itation extremes (black dashed). The lines show multimodel medians of the
fractional changes relative to 20th-century values, normalized by the global-
mean change in surface air temperature for each model. Model scatter is
shown for the fractional change in precipitation extremes using the inter-
quartile range (shading). The saturation water vapor content is calculated
using an average of the climatological monthly-mean temperature over all
times and longitudes at which the extreme precipitation occurs.
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B

Fig. 3. Fractional changes in the 99.9th percentile of daily precipitation for
each model versus changes in atmospheric water vapor content and scalings
for precipitation extremes. (A) Atmospheric water vapor content (open sym-
bols) and the thermodynamic scaling that neglects changes in upward velocity
(solid symbols). (B) Full scaling for precipitation extremes. The fractional
change are relative to 20th-century values, averaged over the extratropics
(Left) or tropics (Right) and normalized by the change in surface air temper-
ature averaged over the extratropics or tropics. Solid lines correspond to
one-to-one relationships. The extratropics are defined as the regions pole-
ward of 30° latitude, and the tropics are defined as the region equatorward
of 30° latitude.

Fig. 1. The 99.9th percentile of daily precipitation (millimeters per day) for
the periods 1981–2000 (blue) and 2081–2100 (red) in the SRES A1B scenario
(multimodel median), and based on Global Precipitation Climatology Project
(GPCP) data for the period 1997–2006 (black). Model scatter (shading) for the
period 1981–2000 is shown using the interquartile range (50% of models lie
within the shaded region). The spatial resolution of the GPCP data were
degraded from 1° to 3°, which is comparable with climate model resolutions.
A Gaussian smoothing filter of standard deviation 6° latitude was applied to
reduce noise in all plots showing variations with latitude.

14774 ! www.pnas.org"cgi"doi"10.1073"pnas.0907610106 O’Gorman and Schneider

Sensitivity	of	99.9th percentile	of	precipitation	to	surface	temperature		in	CMIP5	models	
(O’Gorman	&	Schneider,	2009)



But	no	agreement	in	changes	to	tropical	
precipitation	extremes
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Sensitivity	of	99.9th percentile	of	precipitation	to	surface	temperature		in	CMIP5	models	
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What	sets	the	spatial	pattern	of	changes	to	
precipitation	extremes	with	warming?

Multi-model	mean	over	22	CMIP5	models.	Stipling where	80%	of	models	agree	on	sign.
(Pfahl et	al.	2015)



What	sets	the	spatial	pattern	of	changes	to	
precipitation	extremes	with	warming?

(Pfahl et	al.	2015)



Spatial	pattern	determined	by	dynamic	
component

dynamic	componentthermodynamic	component

(Pfahl et	al.	2015)



What	can	we	say	about	precipitation	
extremes?

• Thermodynamic	component	gives	large	and	robust	
increase	in	precipitation	extremes

• But	dynamic	component	may	also	be	large	in	the	
tropics,	and	on	regional	scales
•magnitude	and	spatial	pattern	of	changes	remain	uncertain

Understanding	changes	in	precipitation	extremes	
requires	understanding	how	large-scale	upward	motion	

will	change	under	warming



How	can	we	constrain	future	changes	in	
(tropical)	precipitation	extremes?



How	can	we	constrain	future	changes	in	
(tropical)	precipitation	extremes?

Problem:	
Grid-scale	vertical	velocity	relies	on	interaction	

between	convection	and	large	scale	

•poorly	simulated	in	global	models

•No	guarantee	that	good	simulation	of	control	
climate	leads	to	good	simulation	of	changes



Direction	I:	
Observational	
constraints

LETTERS NATURE GEOSCIENCE DOI: 10.1038/NGEO1568
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Figure 1 | Time series of precipitation extremes and surface temperature
over the tropical oceans in observations and simulations (GFDL-CM2.0
and ECHAM5/MPI). Anomalies in the 99.9th percentile of precipitation
(blue) and surface temperature rescaled by the sensitivity (% K�1) for
variability in each case (green) are shown. Also shown (red) for the models
are surface temperature anomalies rescaled by the sensitivity for variability
implied by the sensitivity for climate change (over the whole tropics) and
the regression relationship between sensitivities for variability and climate
change for all the CMIP3 models (Supplementary Table S1). Time series are
filtered with a 6-month running average.

generally analysed over the tropical oceans because this is found
to give the strongest constraint on sensitivities for climate change.
Results are also reported using variability over thewhole tropics.

Time series are first constructed of precipitation extremes and
mean surface temperature over the tropical oceans between 30� S
and 30� N (Methods). The influence of ENSO on precipitation
extremes over the tropical oceans is clearly evident in observations,
as shown in Fig. 1 for the 99.9th percentile of daily precipitation and
consistent with results from previous studies4–6. Positive anomalies
in surface temperature tend to be associatedwith positive anomalies
in precipitation extremes; the calculated sensitivity to surface
temperature (Methods) is 25%K�1 with a 90% confidence interval
of 16–36%K�1. A similar behaviour is found in the climate-model
simulations, but with different time series of surface temperature
because coupled models are considered, and with very different
sensitivities depending on the climate model used (Fig. 1 and
Supplementary Fig. S1).

Sensitivities for climate change are calculated over the whole
tropics in the climate model simulations and are normalized
by changes in mean surface temperature (Methods). For the
99.9th percentile of precipitation, the sensitivities for climate
change are strongly correlated across models with the sensitivities
for variability (Fig. 2), with a correlation coefficient of 0.866.
The relationship between sensitivities is further quantified using
ordinary-least-squares regression (Supplementary Table S1). The
regression line passes close to the origin, and the sensitivity for
variability is greater than the sensitivity for climate change by
roughly a factor of 2.5.

The relationship between the sensitivities for variability and
climate change, together with the observed sensitivity for variability,
yields an inferred sensitivity for climate change. For the 99.9th
percentile of precipitation, the inferred sensitivity for climate
change is 10%K�1, which is higher than what most of the models
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Figure 2 | Sensitivities (%K�1) of the 99.9th percentile of precipitation
for variability versus climate change in the CMIP3 simulations. The solid
line shows the ordinary-least-squares best fit. Histograms show estimates
(with uncertainty) of the observed sensitivity for variability and the inferred
sensitivity for climate change. Sensitivities for variability are over the
tropical oceans and sensitivities for climate change are over the
whole tropics.

simulate (Fig. 2). Uncertainty is estimated by a bootstrapping
procedure involving resampling of the models used and 12-month
blocks in the observed and simulated time series (Methods). The
resulting 90% confidence interval of 6–14%K�1 is substantially
narrower than the inter-model scatter of 2–23%K�1, clearly
illustrating the value of the observational constraint.

The inferred sensitivity for climate change increases with
percentile from the 98th to the 99.9th percentile and decreases
slightly to the 99.95th percentile (Fig. 3a); it generally exceeds
the multimodel-median sensitivity (and by as much as 68%),
although it maximizes at the 99.9th percentile whereas the
multimodel median continues to increase with percentile. Both
intermodel scatter and the strength of the relationship between
sensitivities for variability and climate change increase with
percentile (Supplementary Table S1), such that the observational
constraint ismore useful for higher percentiles of precipitation.

The inferred sensitivities were also calculated for climate change
over land only, with variability over the ocean as before. A strong
relationship holds between climate change and variability for
the higher percentiles of precipitation considered (Supplementary
Fig. S2 and Table S2), and the inferred sensitivities for climate
change over land approach the sensitivities over the whole tropics
at these percentiles (Fig. 3b). This similar response over land and
the whole tropics occurs despite ⇠60% greater surface warming
over land than ocean (all sensitivities for climate change are
normalized by temperature changes over the whole tropics for ease
of comparison). Indeed, the percentage changes in precipitation
extremes in the simulations of climate change are close to equal over
land and ocean across all themodels (Supplementary Fig. S3), which
is likely related to the importance of oceanic water vapour sources
for precipitation over land and to decreases in land surface-air
relative humidity under global warming25.

For the ‘good-ENSO’ subset of models (Supplementary Infor-
mation), the relationship between sensitivities for climate change
and variability is very tight for the 99.9th percentile of precipitation
(Supplementary Fig. S4), with a correlation coefficient of 0.997, and
the resulting inferred sensitivities for climate change are similar to
what is obtained using all the models (Supplementary Table S1).
This robustness suggests that the inferred response to climate
change is not strongly affected by the relatively poor quality of
simulated ENSO temperature variability in some of the model
simulations. Similar results are also obtained using the CMIP5

698 NATURE GEOSCIENCE | VOL 5 | OCTOBER 2012 | www.nature.com/naturegeoscience

Tropical-mean	changes	in	precipitation	
extremes	across	18	models	

(O’Gorman	2012)

Combine	GCMs	and	
observations	of	variability		
to	derive	an	“emergent	
constraint”	on	
precipitation	extremes	



Could	this	be	applied	on	smaller	
scales?

Can	these	results	be	used	to	reason	about	global	warming?

3036 G. Lenderink et al.: Hourly precipitation extremes
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Fig. 1. Dependency of different percentiles of hourly precipitation extremes on daily mean temperature
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are first computed from the GPD fit. Anomalies compared
to the average of all 15-yr periods are then computed, and
then averaged over several months, e.g. June, July and Au-
gust (JJA) or the months May until October (MJJASO). This
measure is denoted as 1Prh. Error bands are based on the
98% confidence interval of the GPD fit procedure, assuming
errors of the separate months to be independent. The choice
of 15 yr is a compromise between being able to determine the
different extremes (which are very noisy with less than 10 yr
of data) and being able to capture inter-decadal variations
(which are more damped with longer aggregation periods).
Here, we use the daily mean dew point temperature because
hourly observations are not available for the De Bilt time se-
ries before 1950. We note that for the period 1950–2006 sim-
ilar results are obtained using hourly dew point temperatures.

3 Scaling of hourly precipitation extremes

Figure 1 shows scaling relations of hourly precipitation ex-
tremes derived using the daily mean temperature for data
from the Hong Kong Observatory (HKO) and the 27 stations
in the Netherlands (NL). For NL, this is the reproduction of
Fig. 1d in Lenderink and van Meijgaard (2010), yet with one
year more data for each station. There is clear hint of a de-
crease in precipitation intensity for temperatures above 24 �C
in NL, but the number of observations with rain above that
temperature is very small and consequently the error bands
are large. For instance, above 24 �C there is no observation
corresponding to the 99.9th percentile, and this percentile
is computed from the extrapolation by means of the GPD

fit (indicated by the dashed purple line in Fig. 1). There is
a very clear fall off in intensity above 24 �C in HKO. Since
there are many days (about 50% of days in 1971–2000) with
daily mean temperatures above that temperature in HKO, this
fall off in intensity is obviously well sampled. Below 24 �C,
both data sources show a super C-C scaling. At the same
temperature, and for the same percentile, intensities in HKO
are generally larger than those in NL by 20–30%.
Results using the dew point temperature are shown in

Fig. 2, where we used the hourly dew point temperature at the
time of each hourly rainfall observation (h-0), and from two
(h-2) and four hours (h-4) before each rainfall observation.
Taking the dew point temperature from four hours before
each rainfall observation (h-4) the most consistent scaling is
obtained. With consistent we mean here the most constant
dependency across the largest range in dew point tempera-
tures. Taking the dew point temperature at the time of the
precipitation event (h-0) less consistent results are obtained,
in particular for the high temperature range. This is because
the shower affects the dew point temperature by evaporation
of precipitation (causing an increase in dew point) and the
transport of dry air by the convective downdrafts associated
with the shower (causing a decrease in dew point). In par-
ticular for the most intense showers often a decrease in dew
point temperature is observed during the shower. The dew
point temperature from four hours earlier is therefore a bet-
ter measure of the near surface humidity from the air mass
in which the shower develops. To keep the text concise we
will omit “taken four hours before each hourly precipitation
observation” in the following, and just use “hourly dew point
temperature”.

Hydrol. Earth Syst. Sci., 15, 3033–3041, 2011 www.hydrol-earth-syst-sci.net/15/3033/2011/

Hong	Kong The	Netherlands

(Lenderink et	al.,	2011)



Could	this	be	applied	on	smaller	
scales?

Can	these	results	be	used	to	reason	about	global	warming?
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measure is denoted as 1Prh. Error bands are based on the
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(which are more damped with longer aggregation periods).
Here, we use the daily mean dew point temperature because
hourly observations are not available for the De Bilt time se-
ries before 1950. We note that for the period 1950–2006 sim-
ilar results are obtained using hourly dew point temperatures.

3 Scaling of hourly precipitation extremes

Figure 1 shows scaling relations of hourly precipitation ex-
tremes derived using the daily mean temperature for data
from the Hong Kong Observatory (HKO) and the 27 stations
in the Netherlands (NL). For NL, this is the reproduction of
Fig. 1d in Lenderink and van Meijgaard (2010), yet with one
year more data for each station. There is clear hint of a de-
crease in precipitation intensity for temperatures above 24 �C
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is computed from the extrapolation by means of the GPD

fit (indicated by the dashed purple line in Fig. 1). There is
a very clear fall off in intensity above 24 �C in HKO. Since
there are many days (about 50% of days in 1971–2000) with
daily mean temperatures above that temperature in HKO, this
fall off in intensity is obviously well sampled. Below 24 �C,
both data sources show a super C-C scaling. At the same
temperature, and for the same percentile, intensities in HKO
are generally larger than those in NL by 20–30%.
Results using the dew point temperature are shown in

Fig. 2, where we used the hourly dew point temperature at the
time of each hourly rainfall observation (h-0), and from two
(h-2) and four hours (h-4) before each rainfall observation.
Taking the dew point temperature from four hours before
each rainfall observation (h-4) the most consistent scaling is
obtained. With consistent we mean here the most constant
dependency across the largest range in dew point tempera-
tures. Taking the dew point temperature at the time of the
precipitation event (h-0) less consistent results are obtained,
in particular for the high temperature range. This is because
the shower affects the dew point temperature by evaporation
of precipitation (causing an increase in dew point) and the
transport of dry air by the convective downdrafts associated
with the shower (causing a decrease in dew point). In par-
ticular for the most intense showers often a decrease in dew
point temperature is observed during the shower. The dew
point temperature from four hours earlier is therefore a bet-
ter measure of the near surface humidity from the air mass
in which the shower develops. To keep the text concise we
will omit “taken four hours before each hourly precipitation
observation” in the following, and just use “hourly dew point
temperature”.

Hydrol. Earth Syst. Sci., 15, 3033–3041, 2011 www.hydrol-earth-syst-sci.net/15/3033/2011/

Hong	Kong The	Netherlands

(Lenderink et	al.,	2011)

Bao et	al.	(2017)	showed	(award	winning	
work!)	that	climate	response	different	to	

variability

Missing:	physical	model	connecting	
variability	to	climate	change



Direction	II:	Theoretical	constraints

•Use	QG-omega	equation	to	reason	about	changes	
to	upward	motion	(e.g.,	Tandon et	al.,	2018)

𝑁/

𝑓/
𝛻2/𝜔 + 𝜕44𝜔 = ℱ(𝜁, 𝑇, 𝑄)

•Can	use	CRM	to	calculate	the	convective	heating

convective	heating
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Fig. 2. (A) Daily precipitation from the Climate Prediction Center (CPC)
data, the Global Precipitation Climatology Project (GPCP) precipitation data
(38), ERA reanalysis (12-h reforecast), and CRM simulation of the control
case. The blue line is the mean of the three observations and reanalysis
dataset. (B) Daily precipitation of the control case and two perturbed cases.
Error bars indicate the SD among six ensemble members, which are different
realizations with small random noise in the initial conditions (SI Appendix).
Numbers in brackets are the mean precipitation between May 22 and 26
(marked by the black vertical dash lines).

simulation also matches the reanalysis reasonably well (SI
Appendix, Fig. S3). The precipitation comparisons between the
control and perturbed cases show the sensitivity of the pre-
cipitation to the background climate. As an example, Fig. 2B
shows daily precipitation from the control case (Ts =299 K), the
Ts =297 K case, and the Ts =301 K case. Each case includes
six ensemble members with different realizations of small ran-
dom noise in the initial conditions (SI Appendix). Precipitation
increases with warming strongly and far above the variability
within the ensemble. We focus on the 5-d mean precipitation
between May 22 and May 26, 2015 (denoted P) hereafter. Pre-
cipitation totals on this timescale are relevant to impacts on
larger scales (e.g., flooding in large river basins) and also rele-
vant to interpretations of GCM results often used in the context
of climate change studies. Many previous studies have used
high-resolution regional simulations to examine changes with
warming of convective-scale precipitation and updrafts (13, 15–
19), which are of great societal relevance to local areas (39).
Analyses of convective-scale responses to the surface warming
are presented in SI Appendix as a complement to our primary
focus on the larger space and timescale.

As Ts increases from 293 K to 305 K, P increases expo-
nentially from 7.4 to 36.3 mm/d (Fig. 3A). We calculate the
exponential growth rate locally at each Ts ( �lnP

�Ts
using centered

differences, except for the first and last values, in which forward
and backward differences are used) (Fig. 3B). The precipita-
tion sensitivity to surface temperature, �lnP

�Ts
, is not constant but

increases from 7% K�1 at Ts =293 K to 17% K�1 at Ts =301 K;
then, it remains roughly constant as Ts further increases. Over-
all, the extreme precipitation sensitivity substantially exceeds CC
scaling, implying an important role for dynamic feedbacks. The
results here are qualitatively consistent with the super-CC scaling
of extreme precipitation found in observations on the interan-
nual timescale (12) and in some numerical modeling studies (10,
14, 16).

We apply the conventional decomposition (10) to quantify
the thermodynamic and dynamic components of the extreme
precipitation sensitivity. This decomposition is based on the
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warmer	
climate

large-scale	upward	motion	 Nie et	al.	(2018)



Direction	III:	Regional-scale	simulations	with	
cloud	permitting	models

•Some	studies	find	super-CC	scaling	in	convective	
precipitation	extremes	(Kendon et	al.,	2014)	while	
others	do	not	(Ban	et	al.,	2015)	

•May	depend	on	region,	model	or	boundary	
conditions

•Much	work	to	be	done…



Climate	change	will	very	likely	cause	increases	
in	precipitation	extremes	across	the	globe

•To	understand	magnitude	and	spatial	pattern	need	
to	predict	changes	to	the	dynamics	(woo!)

•Need	to	combine	observations,	theory,	and	high-
resolution	models	(along	with	GCMs)	to	achieve	this


