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How iIs drought frequency and persistence associated with the

LFV of the major climate modes?
Consider rainfall trends in South Eastern Australia

* Risbey et al (2013) “The existing literature is ... somewhat contradictory, with some studies ruling out some of the
processes that other studies have found to be a substantial cause”

1. Increased (decreased) frequency of El Nino (La Nina) events (Cai & Cowan 2008, Gallant et al 2007) with an association
to severe droughts (Nicholls 1988, Wang & Hendon 2007). ENSO-precipitation teleconnection varies with phase of the
IPO (Power et al 1999, Arblaster et al 2002) i.e. is weaker during +ve IPO phase. Westra et al 2015 question the
relationship between the ENSO-precipitation teleconnection and the IPO (Westra et al 2015). 1996-2009 drought not
associated with ENSO (Murphy & Timbal 2008, Nicholls 2010, Timball & Hendon 2010)

2. Frequency of drought post 1950 with dry periods associated with an unusually high number of +ve 10D events (Cai et al
2009, Ummenhofer et al 2009, 2011). 1996-2009 drought not associated with the IOD (Verdon-Kidd and Kiem 2009,
Nicholls 2010, Timball & Hendon 2011)




Predictability in nonlinear, non-stationary and non-Gaussian
systems

e Predictability and causality are fundamentally related via identification of an
underlying stochastic model i.e. some slow manifold or local region in phase space
whose dynamics capture the essential LFV of the climate system AND some noise
process representative of fast processes at smaller spatial scales responsible for the
initiation of transitions between regimes (phases of the respective climate modes).

* Prediction is the problem of projection onto the relevant dynamical vectors that span
the relevant region of phase space (manifold) that determine the underlying
dynamics of the climate modes and capture information about the instabilities




Ensemble prediction
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Schematic of ensemble prediction system on seasonal to decadal time scales showing (a) the
impact of model biases and (b) a changing climate. The uncertainty in the model forecasts
arises from both initial condition uncertainty and model uncertainty. (Slingo & Palmer (2011)
DOI: 10.1098/rsta.2011.0161)
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CAFE system version 2.0: DA + ensemble prediction system

Ensemble prediction system

» Radiosonde
» Satellite

» Surface
observations

» Argo, XBT, CTD
» Satellite SST, SSS, SLA}

» Sea ice, extent,
concentration
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Ocean variance distribution
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1-2 months

Latitude

48-96 month

Monselesan et al GRL 2015
O’Kane et al JGR-oceans 2016

O’Kane et al J. Climate 2018



CAFE ensemble generation

Random initial perturbations with prescribed
RMS whose amplitude defines the rescaling.
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Mean summer DJF cross covariance between ocean observations and atmosphere
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NSO skill comparison

Nino 3.4 anomaly correlation coefficients for CAFE BV and CanCM3 forecasts
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ENSO-precipitation teleconnection and the IPO

Westra et al (J. Climate 2015): Examined issues when using smoothed data as a covariate to predict seasonal and annual
precipitation. They looked at the apparent modulation of the ENSO-precipitation relationship by the IPO considering

1. Artefacts introduced when using a predictor along with its smoothed version in developing predictor-response relationships,
2. stratifying according to the ENSO phase when the true ENSO- precipitation relationship is in fact continuous, and

3. assuming that a linear ENSO-precipitation relationship is modulated by the IPO when the true ENSO- precipitation relationship
IS nonlinear.

4. |dentified correlations / regressions must be dynamically reasonable (see for example the PSA-ENSO teleconnection: O’Kane et
al 2017 MWR)

In the absence of the identification of a physical mechanism of how the IPO modulates the ENSO-precipitation relationship, the IPO index
is not recommended as the basis for statistical modelling of seasonal or annual precipitation because of the potential for statistical
artefacts when stratifying and using smoothed series to simulate the ENSO-precipitation relationship.

IS THE IPO THE BACKGROUND STATE OF ENSO?

IF YES ONE WOULD EXPECT SOME RELATIONSHIP BETWEEN DROUGHT FREQUENCY AND INTENSITY AND THE PHASE OF
THE IPO.

IS THE IPO REALLY A PHYSICAL MODE OF VARIABILITY?

ERl=—12 05| x]3)
Henley et al (2017)




Drought and the IPO

http://www.abs.gov.au/
1958 - 68
This drought was most widespread and probably second to the 1895-1903
drought in severity.
For more than a decade from 1957, drought was consistently prominent and : HADISST (1948-2007)
frequently made news headHines from 1964 onwards.
1982-83
This extensive drought affected nearly all of eastemn Australla, and was
particularly severe In south eastern Australia.
Lowest ever 11 month rainfall occurred over most of Victoria and much of
Inland New South Wales and central and southem Queensland.
2001-2009
Millenium drought.

1972-73

Most of Victoria, western and central New South Wales, South Australia and
north eastern Tasmania

1996-2009

Reduced rain per frontal system, reduced cutoff rainfall assoclated with
weaker blocking systems

1951 -52

Queensland and Northemn Territory; and Westemn Australia, espedially
pastoral areas (1951-54).

1970-73

Prolonged drought over the north-eastern goldfields of Western Australia
and adjacent areas.

1976

Western New South Wales, most of Victoria and South Australia due to fallure

of autumn-winter rains.
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Prediction of the changes in phase of the major climate teleconnections
Is hard!
We first need to understand the causal relationships between them.

We can develop models based on observational data or reanalysis to
develop predictive linear stochastic models.

Suchapproaches are needed in addition tohelp advance forecast




Stochastic models is one approach

AR(n) models
(multi-) Linear regression
POPs / LIMs

BUT we need
Non-stationary nonparametric methods that can be applied to high dimensional data
capable of identifying meta-stable states and the external covariates responsible for secular
(regime) behaviour

VARX - stochastic model Horenko 2011, O’Kane et al 2013, 2015, 2017

The FEM-BV-VARX approximates dynamical processes by a stochastic model of
the form:

Xe =W A0 (Xi—1s - Xe—mr) FB() P2 (u;) +C(2)& (1)

where O (r) = (u(z),A(t),B(t),C(t)) is the vector of time dependent model parame-
ters with mean ti(z). ¢; is in general a nonlinear function connecting present and past
observations (x;_z,-..,X;—mz), but here we take it to be the linear autoregressive fac-
tor model. ¢, (u,) is an external factor function, and C(¢) couples the non-parametric,
independent and identicallly-distributed (i.1.d.) noise process & to the analysed time
series (hereby modelling the impact of unresolved subgrid-scale effects). Time de-

pendence of the model parameters @ () is also induced by the influence of the unre-
solved scales and leads to regime transitions in many realistic systems.




On Inference and Validation of Causality Relations in
Climate Teleconnections

lllia Horenko, Susanne Gerber, Terence J. O’Kane,
James S. Risbey and Didier P. Monselesan
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Figure 7.1 Optimal causality networks for explaining the positive (upper panel) and negative (lower panel) phases of the leading
seven atmospheric teleconnections at time ¢ based on observations in the previous months. Bayesian causality relations induced
by the positive teleconnection phases are shown as solid lines whereas causalities coming from the negative phases are marked
as dotted lines. Presence of arrows in the graph means a presence of statistically significant Bayesian causality relations — for
example a blue arrow from NINO3.4(+) to PNA(+) means a statistically significant conditional probability dependence of the form
ANINO3.4+(1—3)—>PNA+(r) = P [PNAT at t| (NINO3.4Tat (t-3 months) and u’) | = 0.13. Absence of arrows going from other edges in the

past (e.g. from NINO3.4" at (t-lmonths)) to some particular edge at time ¢ (e.g. to PNA™at t) means that this particular relation is not
significant and that the observed dynamics of PNA™at t can be completely explained without this information, e.g. without knowledge
about NINO3.4"at (t-1 months). Two essential sub-graphs of the positive phase network (the first sub-graph describing the relations for
SOI(¢) and NINO3.4(¢), the second one for five other teleconnections) are shown in Fig. 7.4 (Appendix A7.2).




SH Circulation changes coincident with change of IPO phase

500 hPa geopotential height anomaly composite states (1979-2010)

NCEP NNR1 reanalysis data
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Figure 4. Surface air temperature trend (Kdecade") over the period 1979-2010 calculated

Residence length in blocked (black), SAM (blue) or transition (red) states: 500hPa NCEP

reanalysis (5 day running average)
The dashed lines are LOESS smoothed fits to the time averaged data. The values of the yearly averaged data are
shown by the solid lines.
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Prediction must be based on identification of causa
relationships between climate modes and projection onto
he relevant error modes that determine predictability.

Our lack of predictive capability of the causal relationships




CAFE88 coupled ensemble reanalysis:

ETKF 96 members
1988-2018 Daily resolution
Assimilation of ocean - sea ice - atmosphere - BGC observations
Ensemble saved for all 2D AND 3D variables
comprehensive error statistics w.r.t. observations

Aim: to provide a probabillistic state estimation whose statistics come
from a dynamically consistent data set for understanding climate
variability and extremes.

Aim: to provide initial conditions for assessing forecast skill and model
biases over the near term climate.
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Thank you

It is now widely recognized that the climate system is governed by nonlinear,

multi-scale processes, whereby memory effects and stochastic forcing by fast
processes, such as weather and convective systems, can induce regime behavior.
Motivated by present difficulties in understanding the climate system and to tackle

challenges such as anthropogenic climate change and the climatic response to

changes in external forcing, this book gathers contributions from mathematics,

physics and climate science to highlight the latest developments and current
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Nonlinear
and Stochastic
Climate Dynamics

Edited by Christian L. E. Franzke
and Terence J. O’Kane

research questions in nonlinear and stochastic climate dynamics.

In this book, leading researchers discuss some of the most challenging and exciting
areas of research in the mathematical geosciences, such as the theory of tipping
points and of extreme events including spatial extremes, climate networks, data

assimilation and dynamical systems. This edited volume provides graduate

students and researchers with a broad overview of the physical climate system and

introduces powerful data analysis and modeling methods for climate scientists and

applied mathematicians.
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Cover illustration: Storm over Europe, October

282013, Aqua/Modis 12:10 UTC. Image from CAMBRIDGE
https://lance.modaps.eosdis.nasa.gov/cgi-bin/ UNIVERSITY PRESS
www.cambridge.org
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