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How is drought frequency and persistence associated with the 
LFV of the major climate modes? 

Consider rainfall trends in South Eastern Australia
• Risbey et al (2013) “The existing literature is … somewhat contradictory, with some studies ruling out some of the 

processes that other studies have found to be a substantial cause”  

1. Increased (decreased) frequency of El Nino (La Nina) events (Cai & Cowan 2008, Gallant et al 2007) with an association 
to severe droughts (Nicholls 1988, Wang & Hendon 2007). ENSO-precipitation teleconnection varies with phase of the 
IPO (Power et al 1999, Arblaster et al 2002) i.e. is weaker during +ve IPO phase. Westra et al 2015 question the 
relationship between the ENSO-precipitation teleconnection and the IPO (Westra et al 2015). 1996-2009 drought not 
associated with ENSO (Murphy & Timbal 2008, Nicholls 2010, Timball & Hendon 2010)  

2. Frequency of drought post 1950 with dry periods associated with an unusually high number of +ve IOD events (Cai et al 
2009, Ummenhofer et al 2009, 2011). 1996-2009 drought not associated with the IOD (Verdon-Kidd and Kiem 2009, 
Nicholls 2010, Timball & Hendon 2011) 

3. Positive trend in SAM leading to reduced autumn rainfall (Nicholls 2009). 1996-2009 drought not with SAM (Timbal 2009) 

4. Poleward shift and reduced baroclinicity in the (winter) storm tracks (Frederiksen & Frederiksen 2007) driven by CO2 
(Franzke et al 2015, Freitas et al 2015) 

5. Regional effects such as pressure increases (Hope et al 2009) the subtropical ridge (Murphy & Timball 2008) 

• Here we focus on ENSO as the paradigmatic problem of predicting inter annual climate extremes and 
their relationship to the phases of the background state namely the Interdecadal Pacific Oscillation (IPO)



Predictability in nonlinear, non-stationary and non-Gaussian 
systems

• Predictability and causality are fundamentally related via identification of an 
underlying stochastic model i.e. some slow manifold or local region in phase space 
whose dynamics capture the essential LFV of the climate system AND some noise 
process representative of fast processes at smaller spatial scales responsible for the 
initiation of transitions between regimes (phases of the respective climate modes). 

• Prediction is the problem of projection onto the relevant dynamical vectors that span 
the relevant region of phase space (manifold) that determine the underlying 
dynamics of the climate modes and capture information about the instabilities 
(growing error modes) responsible for initiating transitions between metastable 
states (phases). 

• A fundamental question is how to reduce the dimensionality of the problem and 
identify the relevant slow manifold and the form of the noise?
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Ensemble prediction

Schematic of ensemble prediction system on seasonal to decadal time scales showing (a) the 
impact of model biases and (b) a changing climate. The uncertainty in the model forecasts 
arises from both initial condition uncertainty and model uncertainty. (Slingo & Palmer (2011) 
DOI: 10.1098/rsta.2011.0161)



ENSO prediction

Even 1 month out cannot get the extreme event

forecasts

Bias corrected forecasts
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CAFE system version 2.0: DA + ensemble prediction system
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Ocean variance distribution

Geophysical Research Letters 10.1002/2014GL062765

Figure 1. (a) SLA variances calculated from the detrended CSIRO gridded altimeter product (TPJ) over the period January 1993 to December 2013, (b) detrended
NCEP-CFSR reanalyzed SLA (!) over the period January 1979 to December 2010, and (c) ensemble average of the fractional in-band variances from dedrifted
preindustrial control CMIP5 simulations. Time scale bands (bold font) are in years and relative explained variance range (normal font) as a fraction of the total
variance are given on the Eurasian continent. Shading is scaled to the variance range in each subplot such that red indicates the maximum relative explained
variance and blue the minimum. For Figures 1a and 1b the combined variance in each band sums to 1 − "M=10, whereas for Figure 1c the combined variance in
each band sums to 1 − "M=200.
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Figure 2. (a) As in Figure 1 but for SST variances calculated from the ensemble mean of the detrended HAD4KRIG-CW (January 1850 to March 2014),
NOAA-ERSL-V3 (January 1854 to June 2014), and COBE2 (January 1850 to December 2013) data. The combined variance in each band sums to 1 − !M=75. (b) SST
fractional in-band variances calculated from an ensemble average of the dedrifted preindustrial control CMIP5 simulations. The combined variance in each band
sums to 1 − !M=200.
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each individual model are supplied in the supporting information). The 1–2 year internal fractional in band
variances (Figure 3) occur largely in the tropics. Anomaly SSS variances in this time band are also evident in
the ACC and the Kuroshio western boundary current. At 2–5 years, internal anomaly SSS variability is pre-
dominantly in the region of the South Pacific Convergence Zone (SPCZ), the tropical Eastern Indian Ocean,
and to a lesser extent about Indonesian and Java.

At 5–10 years, there is a distinct shift to the subtropics and higher latitudes with little or no variance evident
in the tropics between 158S and 158N. This pattern is also evident for the 10–25 year time band, only
weaker. In the 5-10 year time band, the North Pacific as well as the subtropical South Pacific, South Indian,
and North Atlantic oceans are the regions where most variance resides. As was noted for intrinsic SSS vari-
ability (Figure 2, 2–5 year band), for internal variability coherent signals emerge in the subtropical North
Atlantic and eastern Indian Oceans but at the slightly longer timescales of 5–10 years with some residual
signal evident in the 10–25 year band. At 10–25 years, a strong signal appears in the South African sector of
Antarctica (3508E–458E, southward of 608S) and to a lesser extent in the region where Antarctic sea ice
forms. For the 25–50 year band, the spatial pattern is little changed from the previous time band but some-
what weaker. Beyond 50 years, there is little or no surface salinity variance apart from a weak signal in the
high latitudes of the North Atlantic and in the sea ice zone of the Southern Ocean.

In Figure 4, we display SNRs (log-scale) for the CMIP5 ensemble-averaged model simulations of anomaly SSS
fractional in band variances. Here the black, grey, and light grey contours correspond to in-band variance
SNRs equal to 6, 2, and 1, assuming no covariance across time bands. Apart from the 5–10 year time band,
we see that in the tropics, the SNR largely exceeds 6 for embedding dimensions out to 200 years.

Figure 3. Ensemble mean fractional inband variance of internal SSS variability calculated using yearly anomalies from the climatological annual mean from an ensemble of dedrifted pre-
industrial CMIP5 control simulations identified in Table 1. Time scale bands, relative explained variance range, and shading are as in Figure 2. The combined variance in each band sums
to 12kM5200. The colorbar and shading convention is as for Figure 2.

Journal of Geophysical Research: Oceans 10.1002/2015JC011523
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Mean summer DJF cross covariance between ocean observations and atmosphere 
Along 140E and 2S
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ENSO skill comparison
Nino 3.4 anomaly correlation coefficients for CAFE BV and CanCM3 forecasts  

Lagged auto-correlation coefficients of monthly Nino SST based on100 years of control 
simulation

Projection onto only those disturbances relevant to the Eq. Pacific thermocline 
enhances long range ENSO prediction 

3602 W. Duan, J. Hu

1 3

seasonal variance of Niño-3 SSTA in the CESM still tends 
to have weak ones in boreal spring, suggesting a relatively 
feasible climatological annual cycle. The control run also 
show irregular occurrence of El Niño events with a domi-
nant period of 3 years. Especially, the CESM can capture 
the observed spring persistence barrier of Niño-3 index 
(Fig. 2a), which exhibits a rapid drop in the auto-lag cor-
relation of Niño-3 index occurring in boreal spring. More-
over, the relationship between ENSO SSTA and WWV 

anomalies, as well as the winter persistence barrier of 
WWV anomalies, can be reproduced (Fig. 2b). As such, the 
CESM is deemed acceptable for investigating the SPB for 
El Niño events. Since the model is assumed to be perfect, 
the El Niño events generated by the model’s control run are 
regarded as the “true state” El Niño events to be predicted. 
It should be noting that the El Niño events generated by the 
CESM’s control run are often strong, which could be due to 
the effect of the forcing used in the integrated simulation. 

Fig. 1   a Climatology of SSTs 
(°C) over the tropical Pacific 
during ND(0)J(1) from a1  the 
CESM and a2  the monthly 
Extended Reconstructed Sea 
Surface Temperature Version 
3 (ERSST V3) dataset of the 
period 1952–2011. The thick 
black lines in (a1 ) and (a2 ) 
indicate the 28 °C isotherm. a3  
The climatological SSTs aver-
aged in Niño-3 region at each 
calendar month from CESM 
and ERSST. b Same as a but for 
the standard deviation of SST 
anomalies (°C)

Fig. 2   Lagged autocorrela-
tion coefficients of monthly 
anomalies for a Niño-3 SST 
and b WWV [determined by 
spatial integration of the depth 
of the 20 °C isotherm, Z20, 
over the region (5°S–5°N, 
120°E–80°W), as in Mcphaden 
(20003)] as a function of the 
starting calendar month and lag 
time. The calculations are made 
for the last 100 years of the 150-
year control simulation in the 
CESM model. The character-
istics of the spring persistence 
barrier are consistent with those 
shown in observations reported 
by Yu and Kao (2007)
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ENSO-precipitation teleconnection and the IPO

Westra et al (J. Climate 2015): Examined issues when using smoothed data as a covariate to predict seasonal and annual 
precipitation. They looked at the apparent modulation of the ENSO-precipitation relationship by the IPO considering  

1. Artefacts introduced when using a predictor along with its smoothed version in developing predictor–response relationships,  

2. stratifying according to the ENSO phase when the true ENSO– precipitation relationship is in fact continuous, and  

3. assuming that a linear ENSO–precipitation relationship is modulated by the IPO when the true ENSO– precipitation relationship 
is nonlinear.  

4. Identified correlations / regressions must be dynamically reasonable (see for example the PSA-ENSO teleconnection: O’Kane et 
al 2017 MWR) 

In the absence of the identification of a physical mechanism of how the IPO modulates the ENSO–precipitation relationship, the IPO index 
is not recommended as the basis for statistical modelling of seasonal or annual precipitation because of the potential for statistical 
artefacts when stratifying and using smoothed series to simulate the ENSO–precipitation relationship. 

IS THE IPO THE BACKGROUND STATE OF ENSO?
IF YES ONE WOULD EXPECT SOME RELATIONSHIP BETWEEN DROUGHT FREQUENCY AND INTENSITY AND THE PHASE OF 
THE IPO.

IS THE IPO REALLY A PHYSICAL MODE OF VARIABILITY?

TPI=T2 - 0.5(T1+T3) 
Henley et al (2017)



Drought and the IPO

2001-20091982-831965-19681939-19451918-1920
1914-1915

1895-1903

1972-73
Most of Victoria, western and central New South Wales, South Australia and 
north eastern Tasmania
1996-2009
Reduced rain per frontal system, reduced cutoff rainfall associated with 
weaker blocking systems

SEVERE DROUGHTS IN SOUTH-EASTERN AUSTRALIA

1951 - 52
Queensland and Northern Territory; and Western Australia, especially 
pastoral areas (1951-54).
1970 - 73
Prolonged drought over the north-eastern goldfields of Western Australia 
and adjacent areas.
1976
Western New South Wales, most of Victoria and South Australia due to failure 
of autumn-winter rains.

DROUGHTS IN AUSTRALIA OF LESSER SEVERITY

MAJOR DROUGHTS IN AUSTRALIA
1958 - 68
This drought was most widespread and probably second to the 1895-1903 
drought in severity. 
For more than a decade from 1957, drought was consistently prominent and 
frequently made news head-lines from 1964 onwards. 
1982-83
This extensive drought affected nearly all of eastern Australia, and was 
particularly severe in south eastern Australia. 
Lowest ever 11 month rainfall occurred over most of Victoria and much of 
inland New South Wales and central and southern Queensland.
2001-2009
Millenium drought.

http://www.abs.gov.au/



Prediction of the changes in phase of the major climate teleconnections 
is hard!  

We first need to understand the causal relationships between them. 

We can develop models based on observational data or reanalysis to 
develop predictive linear stochastic models. 

Such approaches are needed in addition to help advance forecast 
systems.



Stochastic models is one approach 

AR(n) models 
(multi-) Linear regression 

POPs / LIMs 

BUT we need 
Non-stationary nonparametric methods that can be applied to high dimensional data 

capable of identifying meta-stable states and the external covariates responsible for secular 
(regime) behaviour  

6 Terence J. O’Kane et al.

Here we apply PCA only to reduce the dimensionality of the data. We make no186

use of the spatial EOF patterns and so avoid the problems associated with questions187

of stationarity. In principle as long as we have considered sufficiently many modes188

to capture the underlying dynamics of the large scale atmospheric patterns and as-189

suming that the unresolved scales can be approximated by a stochastic term then our190

analysis should be robust. In fact O’Kane et al. [2013] have shown that the leading 9191

modes are sufficient to capture the annular mode and midlatitude coherent blocking192

structures. At issue is whether we can represent the unresolved modes by a stochas-193

tic noise term that projects onto the resolved scales. A further complication is that194

inclusion of more PCs renders the problem increasingly ill-posed given the length195

of data available. Here we make the pragmatic choice to limit the dimensionality to196

20PCs. From our calculations with 20PCs the more crucial issue was being able to197

use a sufficiently large number of annealing steps1.198

The FEM-BV-VARX approximates dynamical processes by a stochastic model of199

the form:200

xt = µt +A(t)f1(xt�t , . . . ,xt�mt)+B(t)f2(ut)+C(t)et (1)

where Q(t) = (µ(t),A(t),B(t),C(t)) is the vector of time dependent model parame-201

ters with mean µ(t). f1 is in general a nonlinear function connecting present and past202

observations (xt�t , . . . ,xt�mt), but here we take it to be the linear autoregressive fac-203

tor model. f2(ut) is an external factor function, and C(t) couples the non-parametric,204

independent and identicallly-distributed (i.i.d.) noise process et to the analysed time205

series (hereby modelling the impact of unresolved subgrid-scale effects). Time de-206

pendence of the model parameters Q(t) is also induced by the influence of the unre-207

solved scales and leads to regime transitions in many realistic systems. While a pos-208

teriori inspection of residuals histograms showing log-normal distribution validates209

this a priori assumption, it is important to point out that the assumption of ”white”210

noise is made for convenience and is not an a priori requirement for applying the211

FEM-BV-VARX method.212

Importantly and specifically we refer not to the unconditional probability to de-213

scribe the data by the model i at time t (that would indeed require going through all214

times between 0 and T ) but the conditional one, measuring this probability just at215

time t when all other information at all other time instances t 0 are kept fixed. For a216

given number, K, of clusters and fixed maximal time lag, m, the method minimises217

the distance of the model trajectory (of model metric g) at each time, t, to one of K218

1 More generally FEM-BV-VARX is formulated to expressly deal with the presence of unresolved ex-
ternal covariates (that are not statistically-independent or identically distributed). Such covariates may
result in the non-stationarity and non-homogeneity of the resulting data-driven statistical models and may
manifest in the presence of secular trends and/or in regime-transition behavior. By covariate we not only
mean external forcings (for a more complete discussion see the companion paper by Franzke et al. [2015]
but also unresolved physical processes and scales such as due to EOF truncation. This may then introduce
problems when applying the standard stationary approaches common to machine learning and statistics
[de Wiljes et al. , 2014]. In the context of this paper, this issue plays a very important role when analyzing
atmospheric data since many of the potentially-relevant covariates might not be available explicitly in the
set of covariates that we have chosen for testing. Therefore, when deploying statistical time series analysis
methods, they should be capable of dealing with non-stationarity and non-homogeneity issues that emerge
in the models as a result of these systematically-missing (and potentially-important) external influences.
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structures. At issue is whether we can represent the unresolved modes by a stochas-193

tic noise term that projects onto the resolved scales. A further complication is that194

inclusion of more PCs renders the problem increasingly ill-posed given the length195

of data available. Here we make the pragmatic choice to limit the dimensionality to196

20PCs. From our calculations with 20PCs the more crucial issue was being able to197

use a sufficiently large number of annealing steps1.198

The FEM-BV-VARX approximates dynamical processes by a stochastic model of199

the form:200

xt = µt +A(t)f1(xt�t , . . . ,xt�mt)+B(t)f2(ut)+C(t)et (1)

where Q(t) = (µ(t),A(t),B(t),C(t)) is the vector of time dependent model parame-201

ters with mean µ(t). f1 is in general a nonlinear function connecting present and past202

observations (xt�t , . . . ,xt�mt), but here we take it to be the linear autoregressive fac-203

tor model. f2(ut) is an external factor function, and C(t) couples the non-parametric,204

independent and identicallly-distributed (i.i.d.) noise process et to the analysed time205

series (hereby modelling the impact of unresolved subgrid-scale effects). Time de-206

pendence of the model parameters Q(t) is also induced by the influence of the unre-207

solved scales and leads to regime transitions in many realistic systems. While a pos-208

teriori inspection of residuals histograms showing log-normal distribution validates209

this a priori assumption, it is important to point out that the assumption of ”white”210

noise is made for convenience and is not an a priori requirement for applying the211

FEM-BV-VARX method.212

Importantly and specifically we refer not to the unconditional probability to de-213

scribe the data by the model i at time t (that would indeed require going through all214

times between 0 and T ) but the conditional one, measuring this probability just at215

time t when all other information at all other time instances t 0 are kept fixed. For a216

given number, K, of clusters and fixed maximal time lag, m, the method minimises217

the distance of the model trajectory (of model metric g) at each time, t, to one of K218

1 More generally FEM-BV-VARX is formulated to expressly deal with the presence of unresolved ex-
ternal covariates (that are not statistically-independent or identically distributed). Such covariates may
result in the non-stationarity and non-homogeneity of the resulting data-driven statistical models and may
manifest in the presence of secular trends and/or in regime-transition behavior. By covariate we not only
mean external forcings (for a more complete discussion see the companion paper by Franzke et al. [2015]
but also unresolved physical processes and scales such as due to EOF truncation. This may then introduce
problems when applying the standard stationary approaches common to machine learning and statistics
[de Wiljes et al. , 2014]. In the context of this paper, this issue plays a very important role when analyzing
atmospheric data since many of the potentially-relevant covariates might not be available explicitly in the
set of covariates that we have chosen for testing. Therefore, when deploying statistical time series analysis
methods, they should be capable of dealing with non-stationarity and non-homogeneity issues that emerge
in the models as a result of these systematically-missing (and potentially-important) external influences.

VARX – stochastic model 

FEM-BV-VARX: Horenko(2011); Metzner et al (2012)  
 
O’Kane et al (2013,2014,2015); Risbey et al (2015); Franzke etal (2015) 

Horenko 2011, O’Kane et al 2013, 2015, 2017
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Figure 7.1 Optimal causality networks for explaining the positive (upper panel) and negative (lower panel) phases of the leading
seven atmospheric teleconnections at time t based on observations in the previous months. Bayesian causality relations induced
by the positive teleconnection phases are shown as solid lines whereas causalities coming from the negative phases are marked
as dotted lines. Presence of arrows in the graph means a presence of statistically significant Bayesian causality relations – for
example a blue arrow from NINO3.4(+) to PNA(+) means a statistically significant conditional probability dependence of the form
!NINO3.4+(t−3)→PNA+(t) = P

[
PNA+ at t|

(
NINO3.4+at (t-3 months) and u t)] = 0.13. Absence of arrows going from other edges in the

past (e.g. from NINO3.4+ at (t-1months)) to some particular edge at time t (e.g. to PNA+at t) means that this particular relation is not
significant and that the observed dynamics of PNA+at t can be completely explained without this information, e.g. without knowledge
about NINO3.4+at (t-1 months). Two essential sub-graphs of the positive phase network (the first sub-graph describing the relations for
SOI(t) and NINO3.4(t), the second one for five other teleconnections) are shown in Fig. 7.4 (Appendix A7.2).
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On Inference and Validation of Causality Relations in
Climate Teleconnections

Illia Horenko, Susanne Gerber, Terence J. O’Kane,
James S. Risbey and Didier P. Monselesan

Abstract

The attribution of factors influencing positive and negative phase durations of climate tele-
connections is an important problem in climate research. In addition to inferring such an
attribution directly from climate models or from the available data, distinguishing the true
causality from simple correlations is often hampered by the multiscale nature of the geo-
physical system. Here we deploy a data-driven multiscale causality inference methodology
to extract the statistically most significant Bayesian causality relations between the dis-
cretized historical, seasonal climate teleconnections time series in order to quantify the
probabilistic causality impacts from the unresolved/weather scales (i.e. beyond and above
the synoptic scales). Our results enable us to quantify the leading role of the annular
modes (in particular the Southern Annular Mode) and the tropical Pacific on monthly scale
causalities, revealing that the joint causality impacts from these modes lead to a Bayesian
predictability that is approximately four times stronger than the joint predictability of the
northern hemisphere teleconnections on the same monthly scales. We further show how
the obtained causality networks can be validated and elucidate the possible physical mech-
anisms inducing these relations. This approach enables the prediction of characteristics
like phase duration probabilities and provides a better plausible data-driven explanation
for the observed higher frequencies of long phases of teleconnections such as the El Niño
Southern Oscillation.

7.1 Introduction

Understanding the causal relations between the respective teleconnections of the climate
system is one of the central problems in ocean/atmosphere/climate science. If we denote
the climate variable of interest as y and all other known and measurable variables as
x1, . . . , xn , inference of causality means that in the context of some model (e.g. of the
climate model or, alternatively, of some simplified data-driven probabilistic model) we
would like to identify all of the xi that have a statistically significant impact on the “expla-
nation”/prediction of y while distinguishing them from all x j that are “insignificant” (for
said y). To give an example, suppose the variable of interest y be a state of some climate
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Fig. 1. Composites of 500 hPa geopotential height anomalies over 1979–2010: a) State 1
(Blocking) and b) State 2 (Positive SAM), and composites of surface air temperature c) State
1 (Blocking), d) State 2 (Positive SAM). Only persistent states have been used which last at
least 5 days.
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Figure 4. Surface air temperature trend (Kdecade�1) over the period 1979–2010 calculated
from the yearly averaged Had4Krig version 2.0.0 data set.
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sults and also describe in detail our sensitivity tests regarding
the number of parameters to be estimated and demonstrate
the robustness of our results. We provide our conclusions in
Sect. 5.

2 Data

We use daily NCEP/NCAR (National Centers for Envi-
ronmental Prediction/National Center for Atmospheric Re-
search) reanalysis data (Kalnay et al., 1996) covering the pe-
riod 1980–2007 for 500 hPa geopotential height and surface
air temperature. We consider only anomalies with respect to
the climatological mean where the mean seasonal cycle has
been removed but not detrended. Note that there is still an
annual cycle in higher moments and in the frequency of oc-
currence present in the time series. While there are still large
biases in the Antarctic region in the various reanalysis prod-
ucts (Bromwich and Fogt, 2004; Bromwich et al., 2007), we
have shown in a similar study (O’Kane et al., 2015) that by
using the Japanese 55-year Reanalysis (JRA-55) conducted
by the Japan Meteorological Agency (JMA) we found very
similar results. Hence, our results do not depend strongly on
the used reanalysis data set.
As forcing data we use the Cape Grim CO2 measurements

(Steele et al., 2007), sulfate aerosols (Skeie et al., 2011),
stratospheric aerosol optical thickness (Bourassa et al., 2010)
(available at http://data.giss.nasa.gov/modelforce/strataer/),
stratospheric ozone mass deficit (Roscoe and Haigh, 2007),
and the solar constant (Fröhlich, 2000). Most of the forcing
data is in monthly mean resolution. Since we are using daily
reanalysis data for the clustering, we expand the monthly
forcing data to daily resolution by using the monthly mean
values for each day of the respective month. Because strato-
spheric ozone depletion has a strong annual cycle we carried
out sensitivity analysis by lagging the ozone mass deficit val-
ues by 1, 2 or 3 months and we also used a 365-day backward
running mean. The forcing time series are displayed in Fig. 1.
As internal modes of climate variability, we use an ENSO

3.4 index, the Madden–Julian Oscillation (MJO) index, the
Indian Ocean Dipole (IOD) and the eastern Indian Ocean
Dipole mode indices and the annual cycle here defined as
sin(2 · ⇡ /365 · t). These indices describe tropical sea surface
temperature (SST) variability (ENSO, IOD) or an intrinsic
mode of tropical variability (MJO). We consider these to be
intrinsic drivers of midlatitude variability but recognize that
they likely also respond to changes in external radiative forc-
ing such that a clear separation between cause and effect is
difficult. However, it is still important to elucidate which role
they play in the frequency changes of the regime patterns.
We do not consider Antarctic sea ice extent because of its
marginal expansion and because this slight expansion in ex-
tent is largely wind-driven (Holland and Kwok, 2012) and
likely a response to the changes in the large-scale circula-
tion. Furthermore, the changes in sea ice extent and area
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Figure 1. Forcing time series: Cape Grim CO2 (dark blue), sul-
fate aerosols (green), stratospheric aerosol optical thickness (red),
lagged OMD (blue), OMD (magenta) and solar constant (khaki).
Time series are normalized by subtracting the respective mean and
dividing by the respective standard deviation.

have been spatially heterogeneous, with increases in some
areas like in the Ross Sea and decreases in other areas like
in the Bellingshausen/Amundsen seas (Parkinson and Cav-
alieri, 2012). This is despite the trend towards the positive
SAM; thus, it is unlikely that sea ice extent would have a
significant impact on the secular circulation trends.

3 Non-stationary clustering

We first give an intuitive description of the clustering method
used before we explain it in much more detail in Sect. 3.1.
That section can be skipped by readers who are more inter-
ested in the clustering results.
Many studies have provided evidence that the atmospheric

circulation can be efficiently described by a few persistent
cluster states (Cheng and Wallace, 1993; Kimoto and Ghil,
1993; Corti et al., 1999; Horenko et al., 2008; Majda et al.,
2006; Franzke et al., 2008, 2009, 2011; O’Kane et al., 2013;
Risbey et al., 2015). Conventional clustering methods such
as k-means partition phase space using heuristic algorithms,
for example using empirical orthogonal functions (EOFs),
into an a priori arbitrarily determined k set of cluster cen-
troids whose points within each cluster are close but where
each centroid is in some sense far apart from each other
(Dawson and Palmer, 2014). Similarly, self organizing maps
(SOMs; Johnson et al., 2008) are typically based on minimiz-
ing the geometric (Euclidean) distance between the observa-
tional data and some specified set of recurrent patterns but
without consideration of the persistency of those states and
mostly without considering the dynamics and differences in
dynamics within these states (Michelangeli et al., 1995). Fur-

www.nonlin-processes-geophys.net/22/513/2015/ Nonlin. Processes Geophys., 22, 513–525, 2015

SH Circulation changes coincident with change of IPO phase  

O’Kane et al 2013, 2015, 2017; Franzke et al 2015



Prediction must be based on identification of causal 
relationships between climate modes and projection onto 

the relevant error modes that determine predictability. 

Our lack of predictive capability of the causal relationships 
between the major climate teleconnections, even taking 

into account model deficiencies, is the primary limitation on 
longer term forecast skill for drought.



CAFE88 coupled ensemble reanalysis: 

ETKF 96 members 
1988-2018 Daily resolution 

Assimilation of ocean - sea ice - atmosphere - BGC observations 
Ensemble saved for all 2D AND 3D variables 

comprehensive error statistics w.r.t. observations 

Aim: to provide a probabilistic state estimation whose statistics come 
from a dynamically consistent data set for understanding climate 

variability and extremes. 

Aim: to provide initial conditions for assessing forecast skill and model 
biases over the near term climate.  
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It is now widely recognized that the climate system is governed by nonlinear, 
multi-scale processes, whereby memory effects and stochastic forcing by fast 
processes, such as weather and convective systems, can induce regime behavior. 
Motivated by present difficulties in understanding the climate system and to tackle 
challenges such as anthropogenic climate change and the climatic response to 
changes in external forcing, this book gathers contributions from mathematics, 
physics and climate science to highlight the latest developments and current 
research questions in nonlinear and stochastic climate dynamics.

In this book, leading researchers discuss some of the most challenging and exciting 
areas of research in the mathematical geosciences, such as the theory of tipping 
points and of extreme events including spatial extremes, climate networks, data 
assimilation and dynamical systems. This edited volume provides graduate 
students and researchers with a broad overview of the physical climate system and 
introduces powerful data analysis and modeling methods for climate scientists and 
applied mathematicians.

Cover illustration: Storm over Europe, October 
28 2013, Aqua/Modis 12:10 UTC. Image from 
https://lance.modaps.eosdis.nasa.gov/cgi-bin/
imagery/realtime.cgi, courtesy of NASA/GSFC, 
Rapid Response.
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