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What could possibly go wrong?
OBS AMO. The distribution of correla-
tion coefficients from red noise forcing
is Gaussian with a zero mean and a
standard deviation of 0.30. The 90%,
98%, and 99% confidence levels for
correlations are 0.33, 0.50, and 0.55,
respectively. Using the lag = 1 autocor-
relation of the observed LP-filtered
and detrended AMO time series
(r= 0.95) results in slightly higher
confidence levels for our correlation
coefficients (0.39 (90%), 0.58 (98%),
and 0.64 (99%)). We note that we do
not expect the uninitialized simulations
to have internal variability that is in
phase with the observations, except
by random chance.

Several models in the CMIP5 archive
have multiple ensemble members for
the HIST simulations. In our analysis,
we compare the correlation and var-
iance of individual ensemble members
and the ensemble mean with the
observations and with the PI models.

3. Results
3.1. Variance

Table 1 compares the correlation and
variance between the simulated PI
and HIST AMO and is ordered from
highest to lowest rhist_lp values based
on ensemble member 1. Figure 1a
shows the variance in the PI simulation
(PIvar) compared to the first ensemble
member of each HIST simulation
(HISTvar) listed in Table 1. There is a
large spread in the OBS AMO variance
over the period 1865–2005 (magenta
lines in Figure 1a). The ERSSTv4 var-
iance (0.042) is much higher than the
variance estimated in the earlier ver-
sion, ERSSTv3b (0.031), and in COBE
SSTv2 (0.033). The CMIP5 HIST var-
iances range from 0.008 to 0.047. The

HIST variance in 39 of 41 models exceeds the PI variance (i.e., they lie above the 1-1 line in Figure 1a). Here
PIvar is calculated over the length of the PI simulation. The CMIP5 PI simulations range in length from a cou-
ple centuries to a few millennia. Figure 1b shows the mean variance of all 141 year segments of each PI AMO
(black asterisk), and error bars represent the ±2 times the standard deviation (2σ) of the PI variance. In most
models the 2σ range is small. However, there are a fewmodels that show large changes in variability through-
out their PI simulations (CNRM-CM5-2, GFDL-ESM2G, HadGEM2-AO, HadGEM2-ES, and IPSL-CM5A-LR). In all
but one model, CNRM-CM5-2, the mean of all 141 year segments is identical or similar to the variance calcu-
lated over the entire length of the PI simulation. In the CNRM-CM5-2 model, the PI AMO shows centennial-
scale behavior and using the entire length of the simulation results in a variance of 0.09, well outside the

Figure 1. (a) Comparison of the CMIP5 PI AMO variance and the ensemble
member 1 CMIP5 HIST AMO variance using a fourth-order 10 year
Butterworth low-pass filter for the period 1865–2005. The solid magenta
line is the variance from the ERSSTv4 data set (0.042), and in dashed
magenta is the variance from the COBE data set (0.033), and in black is the
one-to-one line. (b.) Scatterplot showing the variance in the all 41 CMIP5
HIST simulations (20 models have multiple ensemble members) and the
41-member ensemble from CESM-LE. The scatterplot is color coded to
match the model’s color in Figure 1a. The colored open circles are each
ensemble member’s variance, the filled in colored circles are the variance
of the ensemble mean, and the black asterisk is the mean variance of all
140 year segments of eachmodel’s PI simulation. Black error bars represent
±2 times the standard deviation (2σ) of the PI variance. The magenta lines
are the same as in Figure 1a.
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Figure S2. (a,b) Variances of (a) 10-year running trends of the Interdecadal Pacific Oscillation 
(IPO) index, and (b) 35-year running trends of the Atlantic Multidecadal Variability (AMV) index. 
The variance in piControl is plotted against the variance in historical (with forcing response 
removed) for each available ensemble member (Table S1). The one-to-one line is plotted in 
black, and blue line denotes the intermodel least-squares fit regressed through the origin. 
Whiskers denote the 99% confidence interval of the computed variance using a chi-squared 
distribution, with degrees of freedom based on the number of data points in the running trend 
time series. The red dashed lines denoted the 99% confidence interval for the observed data. 
(c,d) Correlations of global mean surface temperature with (c) IPO index, and (d) the AMV index, 
in observations and CMIP5 historical models. The correlations are computed from annual data in 
31-year sliding windows, where year on the x-axes denotes the central year of the 31-year 
window. The shaded blue regions denote the central 68%, 95%, and 100% of the CMIP5 model 
ensemble. Dashed lines denote the 99% levels for statistically significant correlations based on a 
two-tailed Student’s t-distribution with 30 degrees of freedom. 
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(d) Sliding correlation, GMST and AMV
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(b) AMV variance, 35-year trends, CMIP5
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In doing so, we avoid an artificial heat input into the climate system and expect to get a more physical
response in the upper Pacific ocean than with the SST nudging technique (which here consists in adjusting
once a day the nonsolar heat flux that is provided to the ocean model). Since we prescribe the raw daily
mean surface wind stress from ERA-Interim, there is an initial shock (cooling) in the tropical Pacific, which is,
however, fast enough to avoid a persistent drift in the HISTAU integrations (as indicated for instance by
the evolution of the upper ocean heat content averaged over the whole tropical Pacific). While the details
(i.e., the selected domain and time scale) of the wind stress overriding (WSO) technique differ from E14 and
W14, our aim is not to replicate these former experiments but to show that the simulated global climate
response to the prescribed tropical Pacific variability is different between HISSST and HISTAU and therefore
sensitive to the experiment design.

3. Results

Figure 1a shows that the observed ENSO variability is overestimated by many OAGCMs over the course of the
20th century. This is true for the CMIP5 ensemble mean and especially for the MIROC5 model used in W14.
In contrast, CNRM-CM5 shows a lower and presumably more realistic ENSO variability, given the range of both
observed and simulated sliding standard deviations. It should be, however, recognized that some models,
including GFDL-CM2.1 and MIROC5, show a particularly strong interdecadal modulation of ENSO so that the
limited observational record and the use of a single realization of the 20th and 21st century climates might not
be sufficient for an accurate model assessment. Figures 1b–1d show the sliding correlations between GMST
and different regional modes of SST variability. In line with Figure 1a, the correlation with the Niño3.4 SST is
overestimated by many models, especially MIROC5. Regressing the detrended Niño3.4 SST onto grid cell

Figure 1. Simulated (historical + RCP8.5) versus observed (a) standard deviations of the Ninõ3.4 SST, (b) correlations
between the Niño3.4 SST and GMST, (c) correlations between the PDO index and GMST, and (d) correlations between
the AMV index and GMST. The tick marks on the x axis correspond to the central year of a 31 year sliding window. Besides
CNRM-CM5.1 (in red), GFDL-CM2.1 (in blue), and MIROC5 (in green), the grey shading extends over the range of 15 CMIP5
models (also shown are the ensemble mean ±1 standard deviation in brown). Note that GFDL-CM2.1 is not among the
15 CMIP5models. All annualmean time series have been first detrended using a polynomial fit. The PDO index is here defined as
the leading empirical orthogonal function of the annual mean SST anomalies over North Pacific (110°E–100°W/20°N–70°N)
after the global mean SSTanomaly has been removed. The AMV index is simply the average of the annual meanNorth Atlantic
(80°W–0°W/0°N–60°N) SST anomalies after the global mean SST anomaly has been removed.
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Figure S2. (a,b) Variances of (a) 10-year running trends of the Interdecadal Pacific Oscillation 
(IPO) index, and (b) 35-year running trends of the Atlantic Multidecadal Variability (AMV) index. 
The variance in piControl is plotted against the variance in historical (with forcing response 
removed) for each available ensemble member (Table S1). The one-to-one line is plotted in 
black, and blue line denotes the intermodel least-squares fit regressed through the origin. 
Whiskers denote the 99% confidence interval of the computed variance using a chi-squared 
distribution, with degrees of freedom based on the number of data points in the running trend 
time series. The red dashed lines denoted the 99% confidence interval for the observed data. 
(c,d) Correlations of global mean surface temperature with (c) IPO index, and (d) the AMV index, 
in observations and CMIP5 historical models. The correlations are computed from annual data in 
31-year sliding windows, where year on the x-axes denotes the central year of the 31-year 
window. The shaded blue regions denote the central 68%, 95%, and 100% of the CMIP5 model 
ensemble. Dashed lines denote the 99% levels for statistically significant correlations based on a 
two-tailed Student’s t-distribution with 30 degrees of freedom. 
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In doing so, we avoid an artificial heat input into the climate system and expect to get a more physical
response in the upper Pacific ocean than with the SST nudging technique (which here consists in adjusting
once a day the nonsolar heat flux that is provided to the ocean model). Since we prescribe the raw daily
mean surface wind stress from ERA-Interim, there is an initial shock (cooling) in the tropical Pacific, which is,
however, fast enough to avoid a persistent drift in the HISTAU integrations (as indicated for instance by
the evolution of the upper ocean heat content averaged over the whole tropical Pacific). While the details
(i.e., the selected domain and time scale) of the wind stress overriding (WSO) technique differ from E14 and
W14, our aim is not to replicate these former experiments but to show that the simulated global climate
response to the prescribed tropical Pacific variability is different between HISSST and HISTAU and therefore
sensitive to the experiment design.

3. Results

Figure 1a shows that the observed ENSO variability is overestimated by many OAGCMs over the course of the
20th century. This is true for the CMIP5 ensemble mean and especially for the MIROC5 model used in W14.
In contrast, CNRM-CM5 shows a lower and presumably more realistic ENSO variability, given the range of both
observed and simulated sliding standard deviations. It should be, however, recognized that some models,
including GFDL-CM2.1 and MIROC5, show a particularly strong interdecadal modulation of ENSO so that the
limited observational record and the use of a single realization of the 20th and 21st century climates might not
be sufficient for an accurate model assessment. Figures 1b–1d show the sliding correlations between GMST
and different regional modes of SST variability. In line with Figure 1a, the correlation with the Niño3.4 SST is
overestimated by many models, especially MIROC5. Regressing the detrended Niño3.4 SST onto grid cell

Figure 1. Simulated (historical + RCP8.5) versus observed (a) standard deviations of the Ninõ3.4 SST, (b) correlations
between the Niño3.4 SST and GMST, (c) correlations between the PDO index and GMST, and (d) correlations between
the AMV index and GMST. The tick marks on the x axis correspond to the central year of a 31 year sliding window. Besides
CNRM-CM5.1 (in red), GFDL-CM2.1 (in blue), and MIROC5 (in green), the grey shading extends over the range of 15 CMIP5
models (also shown are the ensemble mean ±1 standard deviation in brown). Note that GFDL-CM2.1 is not among the
15 CMIP5models. All annualmean time series have been first detrended using a polynomial fit. The PDO index is here defined as
the leading empirical orthogonal function of the annual mean SST anomalies over North Pacific (110°E–100°W/20°N–70°N)
after the global mean SSTanomaly has been removed. The AMV index is simply the average of the annual meanNorth Atlantic
(80°W–0°W/0°N–60°N) SST anomalies after the global mean SST anomaly has been removed.
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Using single model ensemble means
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required?
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How many ensemble members?

• Smoothing the ensemble mean is ineffective

Frankcombe et al., J. Clim., 2015
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How many ensemble members?

• Even two ensemble members can be more accurate 
than using the multi-model ensemble mean

Frankcombe et al., J. Clim., 2015
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• Using the MMEM is better than using the wrong SMEM

Frankcombe et al., J. Clim., 2015



Multiple estimates of internal variability from observations
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Conclusions so far…
• Using an unsuitable method to remove the forced 

trend can result in large biases in estimates of internal 
variability. 

• Useful single model ensemble means can be 
constructed with surprisingly few ensemble members. 

• The (scaled) multi-model ensemble mean is still the 
best estimate for observations. 

• What about spatial patterns of variability?
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Barnes and Polvani (2013): 

• Jet variability is a function of jet latitude, with jets closer 
to the equator exhibiting more meridional shifting. 

• In the SH and NA, jets shift poleward in future climates. 

• Opposite in the NP. 

SLP

Frankcombe et al., J. Clim., 2018



Changing spatial variability
• Internal variability of SAT is projected to decrease along 

sea ice edges and increase over land at low latitudes. 

• Variability of precipitation will increase, particularly at 
high latitudes. 

• SLP variability is projected to decrease in the Southern 
Hemisphere and the North Atlantic and increase in the 
North Pacific. 

• Can we learn anything from comparing local and 
global responses?
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Conclusions
• Using an unsuitable method to remove the forced trend can result 

in large biases in estimates of internal variability. 

• Useful single model ensemble means can be constructed with 
surprisingly few ensemble members. 

• The (scaled) multi-model ensemble mean is still the best estimate 
for observations. 

• We can make predictions about future changes in variability, but 
only using models with a sufficient number of ensemble members. 

• There are regions where the local forced signal differs 
considerably from the global mean (work in progress…).
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