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• Anomalous warming and cooling of east Pacific 
sea surface temperature (SST, 2-7 year period) 

What is ENSO?

Source: Okumura and Deser, 2010

El Niño SST anomaly composite La Niña SST anomaly composite

El Niño-Southern Oscillation



Precise ENSO prediction enables socie-
ties to prepare for such climatic events

• Connected to severe climatic events: droughts, storms, 
floods, heat waves, bushfires (e.g. Diaz et al. 2001, McPhaden et al. 2006, 
Sarachik and Cance 2010)

Source: https://www.cdc.gov/features/drought/index.html https://gulfnews.com/news/uae/society/expats-shocked-at-flood-damage-and-destruction-back-home-1.2264709 https://www.lecourrieraustralien.com/opinion-australians-are-facing-increasingly-dangerous-bushfire-seasons/?lang=en
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What is ENSO?



WWV: Volume of equatorial Pacific (120°E-
280°E; 5°N-5°S) water above the thermocline

• Warm water volume (WWV) leads ENSO sea surface 
temperature (SST) (e.g. Wyrtki 1985; Jin 1997; Meinen and McPhaden 2000; 
McPhaden 2003; McPhaden 2012)

What is ENSO?

à WWV is a precursor of ENSO 



Under-
standing 
of WWV

Under-
standing 
of ENSO

• Dividing WWV into: 
I. Ekman and geostrohpic transports (Meinen and McPhaden 2001; Meinen 2005; 

Bosc and Delcroix 2008)

II. East and West (Meinen and McPhaden 2000; Izumo et al. 2018; Planton et al. 2018)

III. Instantaneous and adjusted responses (McGregor et al. 2016; Neske and
McGregor 2018)



Instantaneous and adjusted WWV responses
1.5 layer shallow water model forced by an equatorial westerly wind event (WWE)

-Instantaneous
response obtained
during first 2 months
after the wind event

-Adjusted response
begins during the 3rd 
month after the wind 
event

• Adjusted response plays prominent role in cyclic ENSO theories
(e.g. Suarez and Schopf 1988; Jin 1997)

WWE
peak



Instantaneous and adjusted WWV responses

• The recharge-
discharge 
oscillator (Jin, 

1997): considering 
adjusted 
response only

El Niño

La Niña

Equatorial westerlies                  
à adjusted WWV discharge

Equatorial easterlies                    
à adjusted WWV recharge



• 1-year wind forced SWM spin up run (monthly) à free evolution for 3 
months

• 3rd month of free evolution defined as adjusted contribution

• Difference beween wind forced simulation and adjusted contribution
defined as instantaneous contribution

Source: Neske and McGregor 2018

Instantaneous and adjusted WWV responses

ERA-interim winds 
1980-2016



Instantaneous and adjusted WWV responses

Instantaneous contribution

• Shallow water model results forced by ERA-interim winds (Neske and McGregor, 2018):

(Due to winds of the preceding 3 months)



Instantaneous and adjusted WWV responses

Instantaneous contribution Adjusted contribution
(Due to the winds 3-15 months prior)

• Shallow water model results forced by ERA-interim winds (Neske and McGregor, 2018):

(Due to winds of the preceding 3 months)



Instantaneous and adjusted WWV responses

Instantaneous contribution Adjusted contribution

Control WWV (Correlation to observations = 0.86)

• Shallow water model results forced by ERA-interim winds (Neske and McGregor, 2018):

(Due to winds of the preceding 3 months) (Due to the winds 3-15 months prior)



Instantaneous and adjusted WWV responses

Instantaneous contribution Adjusted contribution

• Shallow water model results forced by ERA-interim winds (Neske and McGregor, 2018):

(Due to winds of the preceding 3 months) (Due to the winds 3-15 months prior)



Source: Neske and McGregor 2018

• ENSO predictability >1 season depends on the adjusted
contribution

à Post-2000 control/ENSO SST lead correlation largely reflects
the instantaneous/ENSO SST lead correlation

Instantaneous and adjusted WWV responses



Instantaneous and adjusted WWV responses

Instantaneous contribution Adjusted contribution

?

• Shallow water model results forced by ERA-interim winds (Neske and McGregor, 2018):

(Due to winds of the preceding 3 months) (Due to the winds 3-15 months prior)

+15 %
-44 %



Instantaneous and adjusted WWV responses

Instantaneous contribution
à Highly consitent with
equatorial wind stress

• Shallow water model results forced by ERA-interim winds (Neske and McGregor, 2018):

(Due to winds of the preceding 3 months)



• Throughout most literature: increase in instantaneous
response à increase in adjusted response:

à It is a good approximation: correlation between equatorial 
wind stress and Rossby wave signal ~0.75 (Izumo et al. 2018)

𝜏"
Wind stress

Instantaneous and adjusted WWV responses



More correctly: Strength and sign of Rossby
wave signal depends on the wind stress curl

𝜕𝜏"
𝜕𝑦

Wind stress 
curl

• Throughout most literature: increase in instantaneous
response à increase in adjusted response:

Instantaneous and adjusted WWV responses



Research question

Are the strongest equatorial wind 
stresses always followed by strong 

adjusted contributions?



• Instantaneous contribution east of 200°E is chosen

Identifying strongest equatorial winds



• Instantaneous contribution east of 200°E is chosen

τx equator: wind stress 
averaged over WWV region  

à𝑊𝑊𝑉'()*.,-)* due 
to strongest 𝜏",.

Identifying strongest equatorial winds



Modeling adj. responses to strongest equatorial winds

• 11 peaks
§ 12 troughs

1 STD

• Forcing the SWM with each 3-month forcing period of
the 𝑊𝑊𝑉'()*.,-)* peaks and troughs à 23 model runs



• Transitioning simulations: 
à adjusted response of opposite sign (expected from theory)

• Neutral simulations:
à no adjusted response (between 0.2 and -0.2 / 1023m³)

Modeling adj. responses to strongest equatorial winds 
Eq. westerlies Eq. easterlies



5 out of 11… 3 out of 12… 

…simulations lead to a transitioning adjusted 
response (consistent with theory)

Eq. westerlies Eq. easterlies

Modeling adj. responses to strongest equatorial winds 



• Pre- to post- 2000 differences:

-Pre-2000: 6/12 
simulations are 
transitioning

-Post-2000: 2/11 
simulations are 
transitioning

à Consistent with post-2000 decrease in 
adjusted contribution (Neske and McGregor, 2018)

Modeling adj. responses to strongest equatorial winds 



• Composite WWV6789.:;89 peaks forcing Neutral forcing: 
meridionally 
broader 𝜏"

weaker <=>
<?

around 
WWV region

Modeling adj. responses to strongest equatorial winds 

Westerly wind event (WWE): 
>2 days with zonal wind stress 

anomaly averaged over a 
region exceeds 0.04 N/m² 

(following Harrison and Vecchi, 1997)

Stat. significant
difference

eq. wind 
events

Transitioning 
adj. responses

Neutral         
adj. responses



• Composite WWV6789.:;89 peaks forcing Neutral forcing: 
meridionally 
broader 𝜏"

weaker <=>
<?

around 
WWV region

Modeling adj. responses to strongest equatorial winds 

Westerly wind event (WWE): 
>2 days with zonal wind stress 

anomaly averaged over a 
region exceeds 0.04 N/m² 

(following Harrison and Vecchi, 1997)

Stat. significant
difference

eq. wind 
events

Transitioning 
adj. responses

Neutral         
adj. responses Troughs forcing similar but 

with easterly wind events



• Composite SWM output

20% weaker50% weaker No adjusted response

(5 Peaks) (5 Peaks)

Modeling adj. responses to strongest equatorial winds 

Transitioning     
adj. responses

Neutral                  
adj. responses

Transitioning

Transitioning
minus

Neutral



• Composite SWM output

Troughs simulations similar but 
with opposite sign

20% weaker50% weaker No adjusted response

(5 Peaks) (5 Peaks)

Modeling adj. responses to strongest equatorial winds 

Transitioning     
adj. responses

Neutral                  
adj. responses

Transitioning

Transitioning
minus

Neutral



ENSO precursor?



ENSO precursor?

• 4/5 of transitioning
adjusted responses have a 
clear negative control 
WWV 8 months later

àLa Niña conditions 12 
months later

• No clear tendency for 
neutral simulations

• No clear tendency for 
transitioning troughs 
simulations
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Conclusions
• 65% of the strongest equatorial winds lead to no adjusted response (neutral 

simulations) à at odds with traditional models describing ENSO as a self-sustained 
oscillation (e.g. Suarez and Schopf, 1988; Weisberg and Wang; 1997, Picaut et al., 1997; Jin, 1997) 

• Neutral simulations dominate post-2000 period à consistent with post-2000 decline in 
adjusted WWV (Neske and McGregor 2018)

• Considering the wind stress curl/co-exsitence of equatorial and off-equatorial winds is 
crucial for understanding details of ENSO dynamics (consistent with McGregor et al. 2016)

• Adj. westerly discharges (trans. peaks) are twice as frequently than adj. easterly 
recharges (trans. troughs)

• Precursor skill is good for adj. westerly discharges (trans. peaks) but poor for adj. 
easterly recharges (trans. troughs)

à explain why El Niños are more often followed by La Niñas than the 
other way around (e.g. Kessler 2002; Larkin and Harrison 2002)

• SWM results are consistent with GFDL-MOM025 simulations 



Thank you!
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