
the
Antarctic
Circumpolar
Current

A taste of Quasi-Geostrophy

CLEX Winter School 2020
Atmosphere & Ocean Dynamics

(Teaser version via)

Navid Constantinou
ANU

Shallow-water dynamics

ignore stratification;
take fluid with constant density .ϱ0

vertical momentum equation

∂w
∂t

+ u
∂w
∂x

+ υ
∂w
∂y

+ w
∂w
∂z

= −
1
ϱ0

∂p
∂z

− g

very small very small LARGE LARGE⏟ ⏟ ⏟

Shallow-water dynamics

vertical momentum equation

very small

LARGE LARGE
⏟ ⏟ ⏟

Shallow-water dynamics

= −
1
ϱ0

∂p
∂z

− g∂w
∂t

+ u
∂w
∂x

+ υ
∂w
∂y

+ w
∂w
∂z

vertical momentum equation

very small

LARGE LARGE
⏟ ⏟ ⏟

∂p
∂z

= − ϱ0g

hydrostatic balance

Shallow-water dynamics

= −
1
ϱ0

∂p
∂z

− g∂w
∂t

+ u
∂w
∂x

+ υ
∂w
∂y

+ w
∂w
∂z

vertical momentum equation

very small

LARGE LARGE
⏟ ⏟ ⏟

∂p
∂z

= − ϱ0g

hydrostatic balance

Shallow-water dynamics

= −
1
ϱ0

∂p
∂z

− g∂w
∂t

+ u
∂w
∂x

+ υ
∂w
∂y

+ w
∂w
∂z

⟹ p(x, y, z, t) = ϱ0g(η(x, y, t) − z) + 1 atm

p(x, y, z = η, t) = 1 atm ⏟

horizontal momentum equations

u = (u(x, y, t), υ(x, y, t))∂u
∂t

+ u ⋅ ∇u + f ̂z × u = −
1
ϱ0

∇p

Shallow-water dynamics

∇ =
∂
∂x

x̂ +
∂
∂y

ŷ
Du
Dt

⏟

horizontal momentum equations

u = (u(x, y, t), υ(x, y, t))∂u
∂t

+ u ⋅ ∇u + f ̂z × u = −
1
ϱ0

∇p

Shallow-water dynamics

∇ =
∂
∂x

x̂ +
∂
∂y

ŷ

p(x, y, z, t) = ϱ0g(η(x, y, t) − z) + p0

use
hydrostatic

balance

⏟Du
Dt

⏟

horizontal momentum equations

u = (u(x, y, t), υ(x, y, t))∂u
∂t

+ u ⋅ ∇u + f ̂z × u = −
1
ϱ0

∇p

Shallow-water dynamics

∇ =
∂
∂x

x̂ +
∂
∂y

ŷ

∂u
∂t

+ u ⋅ ∇u + f ̂z × u = − g∇η

p(x, y, z, t) = ϱ0g(η(x, y, t) − z) + p0

use
hydrostatic

balance

⏟Du
Dt

⏟

Shallow-water dynamics

mass conservation

constant density ⟹ volume conservation

Shallow-water dynamics

mass conservation

constant density ⟹ volume conservation

volume of h(x, t) Δx=

Shallow-water dynamics

mass conservation

constant density ⟹ volume conservation

volume of h(x, t) Δx=

=change of
volume

fluid flux into − fluid flux out of

Shallow-water dynamics

mass conservation

constant density ⟹ volume conservation

volume of h(x, t) Δx=

=change of
volume

fluid flux into − fluid flux out of

Δx
∂h(x, t)

∂t
u(x −

Δx
2

, t) h(x −
Δx
2

, t) u(x +
Δx
2

, t) h(x +
Δx
2

, t)= −

Shallow-water dynamics

mass conservation

constant density ⟹ volume conservation

= Δx
u(x − Δx

2 , t) h(x − Δx
2 , t) − u(x + Δx

2 , t) h(x + Δx
2 , t)

Δx

volume of h(x, t) Δx=

=change of
volume

fluid flux into − fluid flux out of

Δx
∂h(x, t)

∂t
u(x −

Δx
2

, t) h(x −
Δx
2

, t) u(x +
Δx
2

, t) h(x +
Δx
2

, t)= −

Shallow-water dynamics

mass conservation

constant density ⟹ volume conservation

= Δx
u(x − Δx

2 , t) h(x − Δx
2 , t) − u(x + Δx

2 , t) h(x + Δx
2 , t)

Δx

≈ − Δx
∂
∂x [h(x, t)u(x, t)]

volume of h(x, t) Δx=

=change of
volume

fluid flux into − fluid flux out of

Δx
∂h(x, t)

∂t
u(x −

Δx
2

, t) h(x −
Δx
2

, t) u(x +
Δx
2

, t) h(x +
Δx
2

, t)= −

Shallow-water dynamics

mass conservation

constant density ⟹ volume conservation

= Δx
u(x − Δx

2 , t) h(x − Δx
2 , t) − u(x + Δx

2 , t) h(x + Δx
2 , t)

Δx

≈ − Δx
∂
∂x [h(x, t)u(x, t)]

∂h
∂t

+ ∇ ⋅ (uh) = 0

volume of h(x, t) Δx=

=change of
volume

fluid flux into − fluid flux out of

Δx
∂h(x, t)

∂t
u(x −

Δx
2

, t) h(x −
Δx
2

, t) u(x +
Δx
2

, t) h(x +
Δx
2

, t)= −

Shallow-water dynamics

∂h
∂t

+ ∇ ⋅ (uh) = 0

∂u
∂t

+ u ⋅ ∇u + f ̂z × u = − g∇η
u = (u(x, y, t), υ(x, y, t))

∇ =
∂
∂x

x̂ +
∂
∂y

ŷ
h(x, y, t) = η(x, y, t) − ηbottom(x, y)

admit wave solutions
(waves that “live” on the fluid’s surface)

non-rotating rotatingf = 0 f = 10−2 s−1gH = 160 km h−1

non-rotating rotatingf = 0 f = 10−2 s−1gH = 160 km h−1

∂u
∂t

+ u ⋅ ∇u + f ̂z × u = − g∇η

Rotating shallow-water dynamics

after the dust settles…

f ̂z × u ≈ − g∇η
geostrophic balance

Coriolis
pressure
gradient

ugeostrophic = −
g
f

∂η
∂y

υgeostrophic = +
g
f

∂η
∂x

≈

horizontal
momentum eqs

non-rotating rotatingf = 0 f = 10−2 s−1

Rotating shallow-water dynamics

Fast-travelling motions

~ hours

“noise”

Slow motions
approximately in

geostrophic balance

~ days (atmos)/weeks (ocean)

“weather”

ugeostrophic = −
∂
∂y (p

ϱ f)
υgeostrophic = +

∂
∂x (p

ϱ f)

Flows in Geostrophic Balance

ugeostrophic = −
∂
∂y (p

ϱ f) υgeostrophic = +
∂
∂x (p

ϱ f)
Evolve much slower than gravity waves

Flows in Geostrophic Balance

ugeostrophic = −
∂
∂y (p

ϱ f) υgeostrophic = +
∂
∂x (p

ϱ f)

Incompressible:
∂
∂x

ugeostrophic +
∂
∂y

υgeostrophic = 0

Evolve much slower than gravity waves

Flows in Geostrophic Balance

ugeostrophic = −
∂
∂y (p

ϱ f) υgeostrophic = +
∂
∂x (p

ϱ f)

Incompressible:
∂
∂x

ugeostrophic +
∂
∂y

υgeostrophic = 0

Flow follows contours
of constant .p/ϱ f

∇(p
ϱ f) ⋅ ugeostrophic = 0

Evolve much slower than gravity waves

Weather maps are all about Quasi-Geostrophy

[credit: BoM]

What if we don’t care about “noise” (=gravity waves)

and we just want to know

about the “weather” (almost geostrophically balanced flow)?

Rotating
shallow-water

dynamics

Quasi-Geostrophic
dynamics

filter out
fast gravity waves∂

∂t (
u
υ
η) = ⋯ ∂

∂t
p = ⋯

One variable suffices
to obtain the flow

Let’s change pace.

How does QG dynamics relates
to 2D turbulence?

(Incompressible 2D flow = Quasi-Geostrophy without Earth’s curvature)

∂u
∂t

+ u ⋅ ∇u = −
1
ϱ0

∇p u = (u(x, y, t), υ(x, y, t)) p(x, y, t)

∇ ⋅ u = 0

Incompressible 2D flow

∂u
∂t

+ u ⋅ ∇u = −
1
ϱ0

∇p u = (u(x, y, t), υ(x, y, t)) p(x, y, t)

∇ ⋅ u = 0

Incompressible 2D flow
tell them it’s

inviscid!

∂u
∂t

+ u ⋅ ∇u = −
1
ϱ0

∇p u = (u(x, y, t), υ(x, y, t)) p(x, y, t)

∇ ⋅ u = 0

(u, υ) = (−∂yψ, ∂xψ)

Incompressible 2D flow
tell them it’s

inviscid!

∂u
∂t

+ u ⋅ ∇u = −
1
ϱ0

∇p u = (u(x, y, t), υ(x, y, t)) p(x, y, t)

∇ ⋅ u = 0

(u, υ) = (−∂yψ, ∂xψ)

(∇ × u) ⋅ ̂z = ∇2ψvorticity vorticity

Incompressible 2D flow
tell them it’s

inviscid!

∂u
∂t

+ u ⋅ ∇u = −
1
ϱ0

∇p u = (u(x, y, t), υ(x, y, t)) p(x, y, t)

∇ ⋅ u = 0

(u, υ) = (−∂yψ, ∂xψ)

(∇ × u) ⋅ ̂z = ∇2ψvorticity vorticity
(u, υ) = (−∂yψ, ∂xψ)

(∂
∂t

+ u ⋅ ∇)∇2ψ = 0

take the curl ∇ ×
incompressible 2D flow

Incompressible 2D flow
tell them it’s

inviscid!

(u, υ) = (−∂yψ, ∂xψ)

(∂
∂t

+ u ⋅ ∇)∇2ψ = 0

(∂
∂t

+ u ⋅ ∇) θ = 0

Note similarity with
passive tracer equation

Incompressible 2D flow = Quasi-Geostrophy on f-plane

(u, υ) = (−
∂
∂y (p

ϱ0 f) ,
∂
∂x (p

ϱ0 f))

(∂
∂t

+ u ⋅ ∇)∇2(p
ϱ0 f) = 0

Incompressible 2D flow
QG on f-plane

(i.e., without Earth’s curvature)

f-plane β-plane
f = f0 = const . f = f0 + βy

(Flat Earth) (Spherical Earth)

[Btw you may find this entertaining: Can the earth be flat ? A physical oceanographer's perspective, arXiv:2001.01521]

https://arxiv.org/abs/2001.01521

Incompressible 2D flow = Quasi-Geostrophy on f-plane

(u, υ) = (−∂yψ, ∂xψ)

(∂
∂t

+ u ⋅ ∇)∇2ψ = 0

(∂
∂t

+ u ⋅ ∇) θ = 0

Note similarity with
passive tracer equation

(∇ × u) ⋅ ̂z = ∇2ψ

[simulation using GeophysicFlows.jl]

https://bit.ly/GeophysicalFlows

Incompressible 2D flow = Quasi-Geostrophy on f-plane

(u, υ) = (−∂yψ, ∂xψ)

(∂
∂t

+ u ⋅ ∇)∇2ψ = 0

(∂
∂t

+ u ⋅ ∇) θ = 0

Note similarity with
passive tracer equation

(∇ × u) ⋅ ̂z = ∇2ψ

[simulation using GeophysicFlows.jl]

https://bit.ly/GeophysicalFlows

Rotating 3D fluids resemble 2D turbulence

2D turbulence without rotation 3D fluid in rotating tank

[MIT Weather in Tank][simulation using GeophysicFlows.jl]

https://bit.ly/GeophysicalFlows

⏟PV

(∂
∂t

+ u ⋅ ∇) (∇2ψ + f) = 0

(u, υ) = (−∂yψ, ∂xψ) ψ =
p

ϱ0 f,

What’s materially conserved is the Potential Vorticity (PV)

Quasi-Geostrophy with Earth’s curvarture (β-plane)

Quasi-Geostrophy with Earth’s curvarture (β-plane)

f = 0 f = f0 + βy

rotatingnon-rotating

∇2ψ∇2ψ ∇2ψ + f

[simulations using GeophysicFlows.jl]

https://bit.ly/GeophysicalFlows

Quasi-Geostrophy with Earth’s curvarture (β-plane)

f = 0 f = f0 + βy

rotatingnon-rotating

∇2ψ∇2ψ ∇2ψ + f

[simulations using GeophysicFlows.jl]

https://bit.ly/GeophysicalFlows

Atmosphere & Ocean Dynamics
CLEx X School 2021 (?)

X = {Winter, Summer, Autum, Spring, Xmas, Easter, …}

BSD

Jupyter notebooks for reproducing animations can be found at:

github.com/navidcy/CLExWinterSchool2020

https://github.com/navidcy/CLExWinterSchool2020

