
the
Antarctic 
Circumpolar 
Current

A taste of Quasi-Geostrophy

CLEX Winter School 2020 
Atmosphere & Ocean Dynamics 

(Teaser version via               )

Navid Constantinou 
ANU



Shallow-water dynamics

ignore stratification;
take fluid with constant density   .ϱ0
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Shallow-water dynamics

∂h
∂t

+ ∇ ⋅ (uh) = 0

∂u
∂t

+ u ⋅ ∇u + f ̂z × u = − g∇η
u = (u(x, y, t), υ(x, y, t))

∇ =
∂
∂x

x̂ +
∂
∂y

ŷ
h(x, y, t) = η(x, y, t) − ηbottom(x, y)

admit wave solutions
(waves that “live” on the fluid’s surface)
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Rotating shallow-water dynamics

after the dust settles… 

f ̂z × u ≈ − g∇η
geostrophic balance

Coriolis
pressure
gradient

ugeostrophic = −
g
f

∂η
∂y

υgeostrophic = +
g
f

∂η
∂x

≈

horizontal
momentum eqs 



non-rotating rotatingf = 0 f = 10−2 s−1



Rotating shallow-water dynamics

Fast-travelling motions

~ hours

“noise”

Slow motions
approximately in

geostrophic balance

~ days (atmos)/weeks (ocean)   

“weather”

ugeostrophic = −
∂
∂y ( p

ϱ f )
υgeostrophic = +

∂
∂x ( p

ϱ f )
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Flows in Geostrophic Balance

ugeostrophic = −
∂
∂y ( p

ϱ f ) υgeostrophic = +
∂
∂x ( p

ϱ f )

Incompressible:
∂
∂x

ugeostrophic +
∂
∂y

υgeostrophic = 0

Flow follows contours 
of constant          .p/ϱ f

∇( p
ϱ f ) ⋅ ugeostrophic = 0

Evolve much slower than gravity waves



Weather maps are all about Quasi-Geostrophy

[credit: BoM]



What if we don’t care about “noise” (=gravity waves)

and we just want to know

about the “weather” (almost geostrophically balanced flow)?



Rotating 
shallow-water 

dynamics

Quasi-Geostrophic
dynamics

filter out
fast gravity waves∂

∂t (
u
υ
η) = ⋯ ∂

∂t
p = ⋯

One variable suffices
to obtain the flow



Let’s change pace.

How does QG dynamics relates
to 2D turbulence?

(Incompressible 2D flow = Quasi-Geostrophy without Earth’s curvature)
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(u, υ) = (−∂yψ, ∂xψ)

( ∂
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( ∂
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+ u ⋅ ∇) θ = 0

Note similarity with
passive tracer equation 

Incompressible 2D flow = Quasi-Geostrophy on f-plane

(u, υ) = ( −
∂
∂y ( p

ϱ0 f ) ,
∂
∂x ( p

ϱ0 f ) )

( ∂
∂t

+ u ⋅ ∇)∇2( p
ϱ0 f ) = 0

Incompressible 2D flow
QG on f-plane

(i.e., without Earth’s curvature)

f-plane β-plane
f = f0 = const . f = f0 + βy

(Flat Earth) (Spherical Earth)

[Btw you may find this entertaining: Can the earth be flat ? A physical oceanographer's perspective, arXiv:2001.01521]

https://arxiv.org/abs/2001.01521
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Rotating 3D fluids resemble 2D turbulence

2D turbulence without rotation 3D fluid in rotating tank

[MIT Weather in Tank][simulation using GeophysicFlows.jl]

https://bit.ly/GeophysicalFlows


⏟PV

( ∂
∂t

+ u ⋅ ∇) (∇2ψ + f ) = 0

(u, υ) = (−∂yψ, ∂xψ) ψ =
p

ϱ0 f,

What’s materially conserved is the Potential Vorticity (PV)

Quasi-Geostrophy with Earth’s curvarture (β-plane)



Quasi-Geostrophy with Earth’s curvarture (β-plane)
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Atmosphere & Ocean Dynamics 
CLEx X School 2021 (?)

X = {Winter, Summer, Autum, Spring, Xmas, Easter, …}

BSD



Jupyter notebooks for reproducing animations can be found at:

github.com/navidcy/CLExWinterSchool2020

https://github.com/navidcy/CLExWinterSchool2020



