A taste of Quasi-Geostrophy

CLEX Winter School 2020 Atmosphere & Ocean Dynamics

(Teaser version via **ZOOM**)

Navid Constantinou ANU

vertical momentum equation

$$\frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} = -\frac{1}{Q_0} \frac{\partial p}{\partial z} - g$$
very small very small Very small LARGE LARGE

vertical momentum equation

$$\frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} = -\frac{1}{Q_0} \frac{\partial p}{\partial z} - g$$
very small

LARGE LARGE

vertical momentum equation

$$\frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} = -\frac{1}{Q_0} \frac{\partial p}{\partial z} - g$$
very small

LARGE LARGE

hydrostatic balance

$$\frac{\partial p}{\partial z} = -\varrho_0 s$$

vertical momentum equation

$$\frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} = -\frac{1}{Q_0} \frac{\partial p}{\partial z} - g$$
very small

LARGE LARGE

hydrostatic balance

$$\frac{\partial p}{\partial z} = -\varrho_0 g$$

$$p(x, y, z = \eta, t) = 1 \text{ atm}$$

$$\Rightarrow p(x, y, z, t) = \varrho_0 g(\eta(x, y, t) - z) + 1 \text{ atm}$$

horizontal momentum equations

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} + f\hat{\mathbf{z}} \times \mathbf{u} = -\frac{1}{Q_0} \nabla p$$

$$\mathbf{u} = (u(x, y, t), v(x, y, t))$$

$$\nabla = \frac{\partial}{\partial x} \hat{\mathbf{x}} + \frac{\partial}{\partial y} \hat{\mathbf{y}}$$

$$\frac{\mathbf{D}\mathbf{u}}{\mathbf{D}t}$$

horizontal momentum equations

$$\frac{\partial u}{\partial t} + u \cdot \nabla u + f\hat{z} \times u = -\frac{1}{\varrho_0} \nabla p$$

$$\frac{Du}{Dt} \qquad \text{use}$$
hydrostatic
balance
$$u = (u(x, y, t), v(x, y, t))$$

$$\nabla = \frac{\partial}{\partial x} \hat{x} + \frac{\partial}{\partial y} \hat{y}$$

$$p(x, y, z, t) = \varrho_0 g(\eta(x, y, t) - z) + p_0$$

horizontal momentum equations

$$\frac{\partial u}{\partial t} + u \cdot \nabla u + f\hat{z} \times u = -\frac{1}{\varrho_0} \nabla p$$

$$\frac{Du}{Dt} \qquad use$$
hydrostatic
balance
$$u = (u(x, y, t), v(x, y, t))$$

$$\nabla = \frac{\partial}{\partial x} \hat{x} + \frac{\partial}{\partial y} \hat{y}$$

 $p(x, y, z, t) = \varrho_0 g(\eta(x, y, t) - z) + p_0$

$$\frac{\partial u}{\partial t} + u \cdot \nabla u + f\hat{z} \times u = -g \nabla \eta$$

mass conservation

mass conservation

volume of
$$= h(x, t) \Delta x$$

mass conservation

mass conservation

$$\Delta x \frac{\partial h(x,t)}{\partial t} = u\left(x - \frac{\Delta x}{2}, t\right) h\left(x - \frac{\Delta x}{2}, t\right) - u\left(x + \frac{\Delta x}{2}, t\right) h\left(x + \frac{\Delta x}{2}, t\right)$$

mass conservation

volume of
$$= h(x,t) \Delta x$$

$$\begin{array}{l} \text{change of volume} \\ \text{volume} \\ \end{array} = \text{fluid flux into} \\ - \text{fluid flux out of} \\ \Delta x \frac{\partial h(x,t)}{\partial t} \\ = u(x - \frac{\Delta x}{2},t) h(x - \frac{\Delta x}{2},t) - u(x + \frac{\Delta x}{2},t) h(x + \frac{\Delta x}{2},t) \\ = \Delta x \frac{u(x - \frac{\Delta x}{2},t) h(x - \frac{\Delta x}{2},t) - u(x + \frac{\Delta x}{2},t) h(x + \frac{\Delta x}{2},t)}{\Delta x} \end{array}$$

mass conservation

volume of
$$= h(x,t) \Delta x$$

$$\text{change of volume} = \text{fluid flux into} - \text{fluid flux out of}$$

$$\Delta x \frac{\partial h(x,t)}{\partial t} = u(x - \frac{\Delta x}{2},t) h(x - \frac{\Delta x}{2},t) - u(x + \frac{\Delta x}{2},t) h(x + \frac{\Delta x}{2},t)$$

$$= \Delta x \frac{u(x - \frac{\Delta x}{2},t) h(x - \frac{\Delta x}{2},t) - u(x + \frac{\Delta x}{2},t) h(x + \frac{\Delta x}{2},t)}{\Delta x}$$

$$\approx -\Delta x \frac{\partial}{\partial x} [h(x,t)u(x,t)]$$

mass conservation

$$\Delta x \frac{\partial h(x,t)}{\partial t} = u\left(x - \frac{\Delta x}{2}, t\right) h\left(x - \frac{\Delta x}{2}, t\right) - u\left(x + \frac{\Delta x}{2}, t\right) h\left(x + \frac{\Delta x}{2}, t\right)$$

$$= \Delta x \frac{u\left(x - \frac{\Delta x}{2}, t\right) h\left(x - \frac{\Delta x}{2}, t\right) - u\left(x + \frac{\Delta x}{2}, t\right) h\left(x + \frac{\Delta x}{2}, t\right)}{\Delta x}$$

$$\approx -\Delta x \frac{\partial}{\partial x} \left[h(x, t) u(x, t)\right]$$

$$\frac{\partial h}{\partial t} + \nabla \cdot (\boldsymbol{u}h) = 0$$

$$\frac{\partial u}{\partial t} + u \cdot \nabla u + f\hat{z} \times u = -g\nabla \eta$$
$$\frac{\partial h}{\partial t} + \nabla \cdot (uh) = 0$$
$$h(x, y, t) = \eta(x, y, t) - \eta_{\text{bottom}}(x, y)$$

$$\mathbf{u} = (u(x, y, t), v(x, y, t))$$

$$\nabla = \frac{\partial}{\partial x}\hat{\mathbf{x}} + \frac{\partial}{\partial y}\hat{\mathbf{y}}$$

admit wave solutions (waves that "live" on the fluid's surface)

Rotating shallow-water dynamics

$$\frac{\partial u}{\partial t} + u \cdot \nabla u + f\hat{z} \times u = -g \nabla \eta$$

after the dust settles...

$$f\hat{z} \times u \approx -g \nabla \eta$$

Coriolis \approx pressure gradient

geostrophic balance

$$u_{\text{geostrophic}} = -\frac{g}{f} \frac{\partial \eta}{\partial y}$$

$$v_{\text{geostrophic}} = + \frac{g}{f} \frac{\partial \eta}{\partial x}$$

t = 250.0 min

Rotating shallow-water dynamics

Slow motions approximately in geostrophic balance

Fast-travelling motions

~ days (atmos)/weeks (ocean)

~ hours

"weather"

"noise"

$$u_{\text{geostrophic}} = -\frac{\partial}{\partial y} \left(\frac{p}{\varrho f}\right)$$

$$v_{\text{geostrophic}} = + \frac{\partial}{\partial x} \left(\frac{p}{\varrho f} \right)$$

Flows in Geostrophic Balance

$$u_{\text{geostrophic}} = -\frac{\partial}{\partial y} \left(\frac{p}{\varrho f} \right)$$

$$v_{\text{geostrophic}} = +\frac{\partial}{\partial x} \left(\frac{p}{\varrho f} \right)$$

Evolve much slower than gravity waves

Flows in Geostrophic Balance

$$u_{\text{geostrophic}} = -\frac{\partial}{\partial y} \left(\frac{p}{\varrho f} \right)$$

$$v_{\text{geostrophic}} = +\frac{\partial}{\partial x} \left(\frac{p}{\varrho f} \right)$$

Evolve much slower than gravity waves

Incompressible:
$$\frac{\partial}{\partial x} u_{\text{geostrophic}} + \frac{\partial}{\partial y} v_{\text{geostrophic}} = 0$$

Flows in Geostrophic Balance

$$u_{\text{geostrophic}} = -\frac{\partial}{\partial y} \left(\frac{p}{\varrho f} \right)$$
 $v_{\text{geostrophic}} = +\frac{\partial}{\partial x} \left(\frac{p}{\varrho f} \right)$

Evolve much slower than gravity waves

Incompressible: $\frac{\partial}{\partial x} u_{\text{geostrophic}} + \frac{\partial}{\partial y} v_{\text{geostrophic}} = 0$

Flow follows contours of constant $p/\varrho f$

$$\nabla \left(\frac{p}{\varrho f}\right) \cdot \mathbf{u}_{\text{geostrophic}} = 0$$

Weather maps are all about Quasi-Geostrophy

What if we don't care about "noise" (=gravity waves)

and we just want to know

about the "weather" (almost geostrophically balanced flow)?

Rotating shallow-water dynamics

$$\frac{\partial}{\partial t} \begin{pmatrix} u \\ v \\ \eta \end{pmatrix} = \cdots$$

Quasi-Geostrophic dynamics

$$\frac{\partial}{\partial t}p = \cdots$$

One variable suffices to obtain the flow

Let's change pace.

How does QG dynamics relates to 2D turbulence?

(Incompressible 2D flow = Quasi-Geostrophy without Earth's curvature)

$$\frac{\partial u}{\partial t} + u \cdot \nabla u = -\frac{1}{\varrho_0} \nabla p \qquad \qquad u = (u(x, y, t), v(x, y, t)) \qquad p(x, y, t)$$

$$\nabla \cdot u = 0$$

$$\frac{\partial u}{\partial t} + u \cdot \nabla u = -\frac{1}{\varrho_0} \nabla p$$

$$\nabla \cdot u = 0$$

$$u = (u(x, y, t), v(x, y, t))$$

$$\boldsymbol{u} = (u(x, y, t), v(x, y, t))$$

$$\frac{\partial u}{\partial t} + u \cdot \nabla u = -\frac{1}{Q_0} \nabla p$$

$$\boldsymbol{u} = (u(x, y, t), v(x, y, t))$$

$$\nabla \cdot \boldsymbol{u} = 0$$

$$(u,v)=(-\partial_y\psi,\partial_x\psi)$$

$$\frac{\partial u}{\partial t} + u \cdot \nabla u = -\frac{1}{Q_0} \nabla p$$

$$\boldsymbol{u} = (u(x, y, t), v(x, y, t))$$

$$\nabla \cdot \boldsymbol{u} = 0$$

$$(u,v)=(-\partial_{y}\psi,\partial_{x}\psi)$$

vorticity
$$(\nabla \times u) \cdot \hat{z} = \nabla^2 \psi$$

vorticity
$$(\nabla \times \boldsymbol{u}) \cdot \hat{\boldsymbol{z}} = \nabla^2 \psi$$

 $(u,v)=(-\partial_{\nu}\psi,\partial_{\chi}\psi)$

$$\left(\frac{\partial}{\partial t} + \boldsymbol{u} \cdot \nabla\right) \nabla^2 \psi = 0$$

$$(u,v) = (-\partial_{y}\psi, \partial_{x}\psi)$$

Incompressible 2D flow = Quasi-Geostrophy on f-plane

Incompressible 2D flow

$$\left(\frac{\partial}{\partial t} + \boldsymbol{u} \cdot \nabla\right) \nabla^2 \psi = 0$$

$$(u,v)=(-\partial_{y}\psi,\partial_{x}\psi)$$

Note similarity with passive tracer equation

$$\left(\frac{\partial}{\partial t} + \boldsymbol{u} \cdot \nabla\right) \theta = 0$$

QG on f-plane

(i.e., without Earth's curvature)

$$\left(\frac{\partial}{\partial t} + \boldsymbol{u} \cdot \nabla\right) \nabla^2 \left(\frac{p}{\varrho_0 f}\right) = 0$$

$$(u,v) = \left(-\frac{\partial}{\partial y} \left(\frac{p}{\varrho_0 f} \right), \frac{\partial}{\partial x} \left(\frac{p}{\varrho_0 f} \right) \right)$$

f-plane

$$f = f_0 = \text{const}$$
.

(Flat Earth)

β-plane

$$f = f_0 + \beta y$$

(Spherical Earth)

Incompressible 2D flow = Quasi-Geostrophy on f-plane

$$\left(\frac{\partial}{\partial t} + \boldsymbol{u} \cdot \nabla\right) \nabla^2 \psi = 0$$

$$(u, v) = (-\partial_{y}\psi, \partial_{x}\psi)$$

Note similarity with passive tracer equation

$$\left(\frac{\partial}{\partial t} + \boldsymbol{u} \cdot \nabla\right) \theta = 0$$

$$(\nabla \times \boldsymbol{u}) \cdot \hat{\boldsymbol{z}} = \nabla^2 \psi$$

vorticity, t=0.00

Incompressible 2D flow = Quasi-Geostrophy on f-plane

$$\left(\frac{\partial}{\partial t} + \boldsymbol{u} \cdot \nabla\right) \nabla^2 \psi = 0$$

$$(u, v) = (-\partial_{v}\psi, \partial_{x}\psi)$$

Note similarity with passive tracer equation

$$\left(\frac{\partial}{\partial t} + \boldsymbol{u} \cdot \nabla\right) \theta = 0$$

$$(\nabla \times \boldsymbol{u}) \cdot \hat{\boldsymbol{z}} = \nabla^2 \psi$$

vorticity, t=140.00

Rotating 3D fluids resemble 2D turbulence

2D turbulence without rotation

3D fluid in **rotating** tank

Quasi-Geostrophy with Earth's curvarture (\beta-plane)

$$\left(\frac{\partial}{\partial t} + \boldsymbol{u} \cdot \nabla\right) \left(\boldsymbol{\nabla}^2 \boldsymbol{\psi} + f\right) = 0$$
PV

$$(u,v) = (-\partial_y \psi, \partial_x \psi), \qquad \psi = \frac{p}{\varrho_0 f}$$

What's materially conserved is the Potential Vorticity (PV)

Quasi-Geostrophy with Earth's curvarture (\beta-plane)

Quasi-Geostrophy with Earth's curvarture (\beta-plane)

Atmosphere & Ocean Dynamics CLEx X School 2021 (?)

X = {Winter, Summer, Autum, Spring, Xmas, Easter, ...}

THE FOLLOWING **PREVIEW** HAS BEEN APPROVED FOR ALL AUDIENCES

ARC
BY THE MOTION PICTURE ASSOCIATION OF AMERICA, INC.

Jupyter notebooks for reproducing animations can be found at:

github.com/navidcy/CLExWinterSchool2020